Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Wnt/β-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium
Eugenia C. Pacheco-Pinedo, … , Francesco J. DeMayo, Edward E. Morrisey
Eugenia C. Pacheco-Pinedo, … , Francesco J. DeMayo, Edward E. Morrisey
Published April 1, 2011
Citation Information: J Clin Invest. 2011;121(5):1935-1945. https://doi.org/10.1172/JCI44871.
View: Text | PDF
Research Article Pulmonology

Wnt/β-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium

  • Text
  • PDF
Abstract

Although mutations in Kras are present in 21% of lung tumors, there is a high level of heterogeneity in phenotype and outcome among patients with lung cancer bearing similar mutations, suggesting that other pathways are important. Wnt/β-catenin signaling is a known oncogenic pathway that plays a well-defined role in colon and skin cancer; however, its role in lung cancer is unclear. We have shown here that activation of Wnt/β-catenin in the bronchiolar epithelium of the adult mouse lung does not itself promote tumor development. However, concurrent activation of Wnt/β-catenin signaling and expression of a constitutively active Kras mutant (KrasG12D) led to a dramatic increase in both overall tumor number and size compared with KrasG12D alone. Activation of Wnt/β-catenin signaling altered the KrasG12D tumor phenotype, resulting in a phenotypic switch from bronchiolar epithelium to the highly proliferative distal progenitors found in the embryonic lung. This was associated with decreased E-cadherin expression at the cell surface, which may underlie the increased metastasis of tumors with active Wnt/β-catenin signaling. Together, these data suggest that activation of Wnt/β-catenin signaling can combine with other oncogenic pathways in lung epithelium to produce a more aggressive tumor phenotype by imposing an embryonic distal progenitor phenotype and by decreasing E-cadherin expression.

Authors

Eugenia C. Pacheco-Pinedo, Amy C. Durham, Kathleen M. Stewart, Ashley M. Goss, Min Min Lu, Francesco J. DeMayo, Edward E. Morrisey

×

Figure 6

Loss of E-cadherin expression in CC10-Cre:KrasG12D:Ctnnb1ex3flox tumor epithelium.

Options: View larger image (or click on image) Download as PowerPoint
Loss of E-cadherin expression in CC10-Cre:KrasG12D:Ctnnb1ex3flox tumor e...
(A–D) Confocal microscopy showing loss of E-cadherin expression by immunostaining and z-axis scanning of confocal data. (E) E-cadherin expression quantified by relative intensity. Relative intensity changes were only significant for CC10-Cre:KrasG12D:Ctnnb1ex3flox tumor epithelium (P < 0.01). Scale bar: 50 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts