Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity
Ya-Jen Chang, … , Petr Illarionov, Dale T. Umetsu
Ya-Jen Chang, … , Petr Illarionov, Dale T. Umetsu
Published December 13, 2010
Citation Information: J Clin Invest. 2011;121(1):57-69. https://doi.org/10.1172/JCI44845.
View: Text | PDF
Research Article

Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity

  • Text
  • PDF
Abstract

Infection with influenza A virus represents a major public health threat worldwide, particularly in patients with asthma. However, immunity induced by influenza A virus may have beneficial effects, particularly in young children, that might protect against the later development of asthma, as suggested by the hygiene hypothesis. Herein, we show that infection of suckling mice with influenza A virus protected the mice as adults against allergen-induced airway hyperreactivity (AHR), a cardinal feature of asthma. The protective effect was associated with the preferential expansion of CD4–CD8–, but not CD4+, NKT cells and required T-bet and TLR7. Adoptive transfer of this cell population into allergen-sensitized adult mice suppressed the development of allergen-induced AHR, an effect associated with expansion of the allergen-specific forkhead box p3+ (Foxp3+) Treg cell population. Influenza-induced protection was mimicked by treating suckling mice with a glycolipid derived from Helicobacter pylori (a bacterium associated with protection against asthma) that activated NKT cells in a CD1d-restricted fashion. These findings suggest what we believe to be a novel pathway that can regulate AHR, and a new therapeutic strategy (treatment with glycolipid activators of this NKT cell population) for asthma.

Authors

Ya-Jen Chang, Hye Young Kim, Lee A. Albacker, Hyun Hee Lee, Nicole Baumgarth, Shizuo Akira, Paul B. Savage, Shin Endo, Takashi Yamamura, Janneke Maaskant, Naoki Kitano, Abel Singh, Apoorva Bhatt, Gurdyal S. Besra, Peter van den Elzen, Ben Appelmelk, Richard W. Franck, Guangwu Chen, Rosemarie H. DeKruyff, Michio Shimamura, Petr Illarionov, Dale T. Umetsu

×

Figure 4

H3N1-exposed NKT cells suppress AHR and increase OVA-specific Tregs.

Options: View larger image (or click on image) Download as PowerPoint
H3N1-exposed NKT cells suppress AHR and increase OVA-specific Tregs.
(A)...
(A) Protocol for adoptive transfer of NKT cells. (B and C) Lung resistance was measured in recipient mice (B; n = 15/group) and BAL cells collected (C). (D) Relative numbers of CD4+ versus DN NKT cells in recipients’ lungs were assessed (E) H3N1-exposed CD4–CD8–NKT (vDN NKT) or CD4+NKT (vCD4 NKT) cells were purified and transferred as in A. Lung resistance was measured in recipient mice (n = 5/group). (F) Eight-week-old WT BALB/c mice received 5 × 104 DO11.10 Rag–/– T cells and were sensitized with OVA/alum. Seven days later, NKT cells from WT BALB/c, Vα14tg, or H3N1-infected mice were adoptively transferred into OVA-sensitized mice. After OVA challenge, the numbers of natural Tregs (CD4+C25+Foxp3+) and adaptive OVA antigen–specific Tregs (CD4+ CD25+ Foxp3+KJ1-26+) were determined. Absolute cell numbers were calculated (n = 5/group). (G) Eight-week-old WT BALB/c recipients were depleted of Tregs through injections of anti-CD25 mAb (clone PC61; 0.5 mg) and assessed as in A (n = 5/group). (H and I) NKT cells from WT or Vα14 Tg were transferred to OVA-sensitized BALB/c mice (n = 4–6/group), which were assessed as in A (H), and BAL cells were analyzed (I). (J) Representative lung sections from recipients described in H were H&E stained (original magnification, ×10). Data represent 2–3 independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 versus WT NKT-OVA (B–D), OVA (E), WT NKT (F, H, and I), and OVA-vNKT (G).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts