Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice
Aubrey C. Chan, … , Kevin J. Whitehead, Dean Y. Li
Aubrey C. Chan, … , Kevin J. Whitehead, Dean Y. Li
Published April 1, 2011
Citation Information: J Clin Invest. 2011;121(5):1871-1881. https://doi.org/10.1172/JCI44393.
View: Text | PDF | Corrigendum
Research Article Vascular biology

Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice

  • Text
  • PDF
Abstract

Cerebral cavernous malformations (CCMs) are a common type of vascular malformation in the brain that are a major cause of hemorrhagic stroke. This condition has been independently linked to 3 separate genes: Krev1 interaction trapped (KRIT1), Cerebral cavernous malformation 2 (CCM2), and Programmed cell death 10 (PDCD10). Despite the commonality in disease pathology caused by mutations in these 3 genes, we found that the loss of Pdcd10 results in significantly different developmental, cell biological, and signaling phenotypes from those seen in the absence of Ccm2 and Krit1. PDCD10 bound to germinal center kinase III (GCKIII) family members, a subset of serine-threonine kinases, and facilitated lumen formation by endothelial cells both in vivo and in vitro. These findings suggest that CCM may be a common tissue manifestation of distinct mechanistic pathways. Nevertheless, loss of heterozygosity (LOH) for either Pdcd10 or Ccm2 resulted in CCMs in mice. The murine phenotype induced by loss of either protein reproduced all of the key clinical features observed in human patients with CCM, as determined by direct comparison with genotype-specific human surgical specimens. These results suggest that CCM may be more effectively treated by directing therapies based on the underlying genetic mutation rather than treating the condition as a single clinical entity.

Authors

Aubrey C. Chan, Stavros G. Drakos, Oscar E. Ruiz, Alexandra C.H. Smith, Christopher C. Gibson, Jing Ling, Samuel F. Passi, Amber N. Stratman, Anastasia Sacharidou, M. Patricia Revelo, Allie H. Grossmann, Nikolaos A. Diakos, George E. Davis, Mark M. Metzstein, Kevin J. Whitehead, Dean Y. Li

×

Figure 7

Natural history of murine CCM by MRI — Pdcd10 onsets earlier and is more severe than Ccm2.

Options: View larger image (or click on image) Download as PowerPoint
Natural history of murine CCM by MRI — Pdcd10 onsets earlier and is more...
(A–D) Live MRI scans of the same Pdcd10flox/+;PDGFb-iCreERT2 mouse at 2 months and 3 months (A and B) and its Pdcd10flox/–;PDGFb-iCreERT2 littermate (C and D). Both mice were given tamoxifen at birth. (E–J) Live MRI scans of the same Ccm2flox/+;PDGFb-iCreERT2 mouse (E–G) and its Ccm2flox/–;PDGFb-iCreERT2 littermate (H–J) at 4, 6, and 7 months. Both mice were given tamoxifen at birth. Arrows indicate CCM lesions. (K) Disease penetrance (proportion affected) by age in Ccm2 and Pdcd10 induced knockout mice as assessed by live MRI. (L) Lesion burden assessed as total number of lesions observed on each tomographic view (slice) of the MRI per mouse. (M) Number of complex lesions (lesions with bright cores) per mouse. (N) Kaplan-Meier survival curve of Ccm2 and Pdcd10 induced knockout mice. For K–N, n = 11 Ccm2, n = 13 Pdcd10. Data in L and M represent mean ± SEM. *P < 0.01; **P < 0.05; ***P < 0.001. Scale bars: 1 mm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts