Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients
Jason L. Gaglia, … , Diane Mathis, Ralph Weissleder
Jason L. Gaglia, … , Diane Mathis, Ralph Weissleder
Published December 1, 2010
Citation Information: J Clin Invest. 2011;121(1):442-445. https://doi.org/10.1172/JCI44339.
View: Text | PDF
Brief Report Autoimmunity

Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients

  • Text
  • PDF
Abstract

Type 1A diabetes (T1D) is an autoimmune disease characterized by leukocyte infiltration of the pancreatic islets of Langerhans. A major impediment to advances in understanding, preventing, and curing T1D has been the inability to “see” the disease initiate, progress, or regress, especially during the occult phase. Here, we report the development of a noninvasive method to visualize T1D at the target organ level in patients with active insulitis. Specifically, we visualized islet inflammation, manifest by microvascular changes and monocyte/macrophage recruitment and activation, using magnetic resonance imaging of magnetic nanoparticles (MNPs). As a proof of principle for this approach, imaging of infused ferumoxtran-10 nanoparticles permitted effective visualization of the pancreas and distinction of recent-onset diabetes patients from nondiabetic controls. The observation that MNPs accumulate in the pancreas of T1D patients opens the door to exploiting this noninvasive imaging method to follow T1D progression and monitoring the ability of immunomodulatory agents to clear insulitis.

Authors

Jason L. Gaglia, Alexander R. Guimaraes, Mukesh Harisinghani, Stuart E. Turvey, Richard Jackson, Christophe Benoist, Diane Mathis, Ralph Weissleder

×

Figure 3

MRI-MNP may be used for the noninvasive quantification of pancreatic changes associated with the development of diabetes.

Options: View larger image (or click on image) Download as PowerPoint
MRI-MNP may be used for the noninvasive quantification of pancreatic cha...
(A) ΔT2 was measured inside matching ROIs before and 48 hours after infusion of MNPs, reflecting local accumulation of MNPs. Comparing recent-onset T1D patients (n = 9) and controls (n = 11), there was a significant difference in ΔT2 within the pancreas (T1D 14.1 ± 4.7 msec, controls 7.1 ± 4.9 msec) but not within paraspinous muscle (T1D 1.28 ± 0.78 msec, controls 1.23 ± 0.90 msec). (B) A composite index was computed using the formula 100 × (ΔT2pancreas/PVI); (T1D 59.7 ± 20.1, controls 22.5 ± 17.5).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts