Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Nitrite-generated NO circumvents dysregulated arginine/NOS signaling to protect against intimal hyperplasia in Sprague-Dawley rats
Matthew J. Alef, … , Edith Tzeng, Brian S. Zuckerbraun
Matthew J. Alef, … , Edith Tzeng, Brian S. Zuckerbraun
Published March 23, 2011
Citation Information: J Clin Invest. 2011;121(4):1646-1656. https://doi.org/10.1172/JCI44079.
View: Text | PDF
Research Article

Nitrite-generated NO circumvents dysregulated arginine/NOS signaling to protect against intimal hyperplasia in Sprague-Dawley rats

  • Text
  • PDF
Abstract

Vascular disease, a significant cause of morbidity and mortality in the developed world, results from vascular injury. Following vascular injury, damaged or dysfunctional endothelial cells and activated SMCs engage in vasoproliferative remodeling and the formation of flow-limiting intimal hyperplasia (IH). We hypothesized that vascular injury results in decreased bioavailability of NO secondary to dysregulated arginine-dependent NO generation. Furthermore, we postulated that nitrite-dependent NO generation is augmented as an adaptive response to limit vascular injury/proliferation and can be harnessed for its protective effects. Here we report that sodium nitrite (intraperitoneal, inhaled, or oral) limited the development of IH in a rat model of vascular injury. Additionally, nitrite led to the generation of NO in vessels and SMCs, as well as limited SMC proliferation via p21Waf1/Cip1 signaling. These data demonstrate that IH is associated with increased arginase-1 levels, which leads to decreased NO production and bioavailability. Vascular injury also was associated with increased levels of xanthine oxidoreductase (XOR), a known nitrite reductase. Chronic inhibition of XOR and a diet deficient in nitrate/nitrite each exacerbated vascular injury. Moreover, established IH was reversed by dietary supplementation of nitrite. The vasoprotective effects of nitrite were counteracted by inhibition of XOR. These data illustrate the importance of nitrite-generated NO as an endogenous adaptive response and as a pathway that can be harnessed for therapeutic benefit.

Authors

Matthew J. Alef, Raghuveer Vallabhaneni, Evie Carchman, Sidney M. Morris Jr., Sruti Shiva, Yinna Wang, Eric E. Kelley, Margaret M. Tarpey, Mark T. Gladwin, Edith Tzeng, Brian S. Zuckerbraun

×

Figure 4

Sodium nitrite inhibited SMC proliferation and was dependent upon p21Waf1/Cip1.

Options: View larger image (or click on image) Download as PowerPoint
Sodium nitrite inhibited SMC proliferation and was dependent upon p21Waf...
(A) Proliferation detected from 3H-thymidine in cultured SMCs demonstrated inhibition with sodium nitrite in a dose-dependent fashion (*P < 0.01). The results are the mean ± SEM of 4 independent experiments, with experiments performed in triplicate for each condition. (B) Western blot analysis demonstrated increased expression of p21 in the presence of the NO donor DETA-NONOate (50 μM) and sodium nitrite (0–100 μM). Blot is representative of 3 independent experiments. (C) Sodium nitrite inhibited wild-type and rapidly proliferating p53-knockout mouse SMC proliferation (*P < 0.05). However, sodium nitrite did not inhibit p21-knockout mouse SMC proliferation. The results are the mean ± SEM of 3 independent experiments, with experiments performed in triplicate for each condition.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts