Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Loss of TFF1 is associated with activation of NF-κB–mediated inflammation and gastric neoplasia in mice and humans
Mohammed Soutto, … , Richard M. Peek Jr., Wael El-Rifai
Mohammed Soutto, … , Richard M. Peek Jr., Wael El-Rifai
Published April 1, 2011
Citation Information: J Clin Invest. 2011;121(5):1753-1767. https://doi.org/10.1172/JCI43922.
View: Text | PDF
Research Article Oncology

Loss of TFF1 is associated with activation of NF-κB–mediated inflammation and gastric neoplasia in mice and humans

  • Text
  • PDF
Abstract

Trefoil factor 1 (TFF1) is a tumor suppressor gene that encodes a peptide belonging to the trefoil factor family of protease-resistant peptides. Although TFF1 expression is frequently lost in gastric carcinomas, the tumorigenic pathways this affects have not been determined. Here we show that Tff1-knockout mice exhibit age-dependent carcinogenic histological changes in the pyloric antrum of the gastric mucosa, progressing from gastritis to hyperplasia, low-grade dysplasia, high-grade dysplasia, and ultimately malignant adenocarcinoma. The histology and molecular signatures of gastric lesions in the Tff1-knockout mice were consistent with an inflammatory phenotype. In vivo, ex-vivo, and in vitro studies showed that TFF1 expression suppressed TNF-α–mediated NF-κB activation through the TNF receptor 1 (TNFR1)/IκB kinase (IKK) pathway. Consistent with these mouse data, human gastric tissue samples displayed a progressive decrease in TFF1 expression and an increase in NF-κB activation along the multi-step carcinogenesis cascade. Collectively, these results provide evidence that loss of TFF1 leads to activation of IKK complex–regulated NF-κB transcription factors and is an important event in shaping the NF-κB–mediated inflammatory response during the progression to gastric tumorigenesis.

Authors

Mohammed Soutto, Abbes Belkhiri, M. Blanca Piazuelo, Barbara G. Schneider, DunFa Peng, Aixiang Jiang, M. Kay Washington, Yasin Kokoye, Sheila E. Crowe, Alexander Zaika, Pelayo Correa, Richard M. Peek Jr., Wael El-Rifai

×

Figure 8

TFF1 suppresses TNF-α–induced upregulation of NF-κB target genes through TNFR1.

Options: View larger image (or click on image) Download as PowerPoint
TFF1 suppresses TNF-α–induced upregulation of NF-κB target genes through...
(A–E) qRT-PCR showing a decrease in mRNA expression of pro-inflammatory genes (CXCL5, IL4R, TIRAP) and anti-apoptotic genes (BIRC3, SMAC) in AGS-TFF1 cells relative to AGS-pcDNA cells, following 8 hours of treatment with TNF-α. The bar graphs represent the mean ± SEM of 3 independent experiments. (F) Immunoprecipitation with TNFR1 in AGS-pcDNA and AGS-TFF1 clone 1. The cells were treated with TNF-α (50 ng/ml) for 30 minutes or left untreated (control). Immunoprecipitations were carried out with mouse TNFR1 antibody. The first lane exhibits AGS-pcDNA following immunoprecipitation with mouse IgG control antibody. All immunoprecipitations and their corresponding input samples were subjected to immunoblotting with rabbit polyclonal antibody against TRAF2. As shown in AGS-pcDNA cells, the TNFR1 immunoprecipitate demonstrated the presence of TRAF2, which was not detected in the AGS-TFF1 cells. The results represent 1 of at least 3 independent experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts