Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A microRNA-dependent program controls p53-independent survival and chemosensitivity in human and murine squamous cell carcinoma
Benjamin Ory, Matthew R. Ramsey, Catherine Wilson, Douangsone D. Vadysirisack, Nicole Forster, James W. Rocco, S. Michael Rothenberg, Leif W. Ellisen
Benjamin Ory, Matthew R. Ramsey, Catherine Wilson, Douangsone D. Vadysirisack, Nicole Forster, James W. Rocco, S. Michael Rothenberg, Leif W. Ellisen
View: Text | PDF | Corrigendum
Research Article Genetics

A microRNA-dependent program controls p53-independent survival and chemosensitivity in human and murine squamous cell carcinoma

  • Text
  • PDF
Abstract

The p53 tumor suppressor, a central mediator of chemosensitivity in normal cells, is functionally inactivated in many human cancers. Therefore, a central challenge in human cancer therapy is the identification of pathways that control tumor cell survival and chemosensitivity in the absence of functional p53. The p53-related transcription factors p63 and p73 exhibit distinct functions — p73 mediates chemosensitivity while p63 promotes proliferation and cell survival — and are both overexpressed in squamous cell carcinomas (SCCs). However, how p63 and p73 interact functionally and govern the balance between prosurvival and proapoptotic programs in SCC remains elusive. Here, we identify a microRNA-dependent mechanism of p63/p73 crosstalk that regulates p53-independent survival of both human and murine SCC. We first discovered that a subset of p63-regulated microRNAs target p73 for inhibition. One of these, miR-193a-5p, expression of which was repressed by p63, was activated by proapoptotic p73 isoforms in both normal cells and tumor cells in vivo. Chemotherapy caused p63/p73-dependent induction of this microRNA, thereby limiting chemosensitivity due to microRNA-mediated feedback inhibition of p73. Importantly, inhibiting miR-193a interrupted this feedback and thereby suppressed tumor cell viability and induced dramatic chemosensitivity both in vitro and in vivo. Thus, we have identified a direct, microRNA-dependent regulatory circuit mediating inducible chemoresistance, whose inhibition may provide a new therapeutic opportunity in p53-deficient tumors.

Authors

Benjamin Ory, Matthew R. Ramsey, Catherine Wilson, Douangsone D. Vadysirisack, Nicole Forster, James W. Rocco, S. Michael Rothenberg, Leif W. Ellisen

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 736 21
PDF 93 7
Figure 385 10
Supplemental data 79 2
Citation downloads 108 0
Totals 1,401 40
Total Views 1,441
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts