Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
LFA-1–specific therapy prolongs allograft survival in rhesus macaques
Idelberto R. Badell, … , Allan D. Kirk, Christian P. Larsen
Idelberto R. Badell, … , Allan D. Kirk, Christian P. Larsen
Published November 22, 2010
Citation Information: J Clin Invest. 2010;120(12):4520-4531. https://doi.org/10.1172/JCI43895.
View: Text | PDF
Research Article

LFA-1–specific therapy prolongs allograft survival in rhesus macaques

  • Text
  • PDF
Abstract

Outcomes in transplantation have been limited by suboptimal long-term graft survival and toxicities associated with current immunosuppressive approaches. T cell costimulation blockade has shown promise as an alternative strategy to avoid the side effects of conventional immunosuppressive therapies, but targeting CD28-mediated costimulation alone has proven insufficient to prevent graft rejection in primates. Donor-specific memory T (TM) cells have been implicated in costimulation blockade–resistant transplant rejection, due to their enhanced effector function and decreased reliance on costimulatory signaling. Thus, we have tested a potential strategy to overcome TM cell–driven rejection by targeting molecules preferentially expressed on these cells, such as the adhesion molecule lymphocyte function–associated antigen 1 (LFA-1). Here, we show that short-term treatment (i.e., induction therapy) with the LFA-1–specific antibody TS-1/22 in combination with either basiliximab (an IL-2Rα–specific mAb) and sirolimus (a mammalian target of rapamycin inhibitor) or belatacept (a high-affinity variant of the CD28 costimulation–blocker CTLA4Ig) prolonged islet allograft survival in nonhuman primates relative to control treatments. Moreover, TS-1/22 masked LFA-1 on TM cells in vivo and inhibited the generation of alloproliferative and cytokine-producing effector T cells that expressed high levels of LFA-1 in vitro. These results support the use of LFA-1–specific induction therapy to neutralize costimulation blockade–resistant populations of T cells and further evaluation of LFA-1–specific therapeutics for use in transplantation.

Authors

Idelberto R. Badell, Maria C. Russell, Peter W. Thompson, Alexandra P. Turner, Tim A. Weaver, Jennifer M. Robertson, Jose G. Avila, Jose A. Cano, Brandi E. Johnson, Mingqing Song, Frank V. Leopardi, Sarah Swygert, Elizabeth A. Strobert, Mandy L. Ford, Allan D. Kirk, Christian P. Larsen

×

Figure 7

TS-1/22 achieves LFA-1/CD11a receptor occupancy in vivo.

Options: View larger image (or click on image) Download as PowerPoint
TS-1/22 achieves LFA-1/CD11a receptor occupancy in vivo.
Pharmacodynamic...
Pharmacodynamic monitoring of serially sampled peripheral lymphocytes from anti–LFA-1–treated animals was done using PFC. A fluorochrome-conjugated antibody competitive with TS-1/22 for CD11a was used to determine the degree of LFA-1 receptor occupancy. (A) Representative PFC plots of recipient CD3+ lymphocytes before transplant (Pre-Tx, red) and while on TS-1/22 (blue) are shown. T cell CD11a was highly detectable before transplant and transitioned to undetectable levels during anti–LFA-1 treatment as TS-1/22 occupied LFA-1. (B) Staining CD3+ lymphocytes for the mouse IgG1 tail of TS-1/22 showed therapeutic antibody coating target cell surfaces. (C) CD4+ and CD8+ subsets (TN, TCM, and TEM) experienced equivalent dose-dependent CD11a receptor occupancy, despite differential expression at baseline and after the discontinuation of TS-1/22 (dosing is depicted by the black bars).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts