Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
LFA-1–specific therapy prolongs allograft survival in rhesus macaques
Idelberto R. Badell, … , Allan D. Kirk, Christian P. Larsen
Idelberto R. Badell, … , Allan D. Kirk, Christian P. Larsen
Published November 22, 2010
Citation Information: J Clin Invest. 2010;120(12):4520-4531. https://doi.org/10.1172/JCI43895.
View: Text | PDF
Research Article

LFA-1–specific therapy prolongs allograft survival in rhesus macaques

  • Text
  • PDF
Abstract

Outcomes in transplantation have been limited by suboptimal long-term graft survival and toxicities associated with current immunosuppressive approaches. T cell costimulation blockade has shown promise as an alternative strategy to avoid the side effects of conventional immunosuppressive therapies, but targeting CD28-mediated costimulation alone has proven insufficient to prevent graft rejection in primates. Donor-specific memory T (TM) cells have been implicated in costimulation blockade–resistant transplant rejection, due to their enhanced effector function and decreased reliance on costimulatory signaling. Thus, we have tested a potential strategy to overcome TM cell–driven rejection by targeting molecules preferentially expressed on these cells, such as the adhesion molecule lymphocyte function–associated antigen 1 (LFA-1). Here, we show that short-term treatment (i.e., induction therapy) with the LFA-1–specific antibody TS-1/22 in combination with either basiliximab (an IL-2Rα–specific mAb) and sirolimus (a mammalian target of rapamycin inhibitor) or belatacept (a high-affinity variant of the CD28 costimulation–blocker CTLA4Ig) prolonged islet allograft survival in nonhuman primates relative to control treatments. Moreover, TS-1/22 masked LFA-1 on TM cells in vivo and inhibited the generation of alloproliferative and cytokine-producing effector T cells that expressed high levels of LFA-1 in vitro. These results support the use of LFA-1–specific induction therapy to neutralize costimulation blockade–resistant populations of T cells and further evaluation of LFA-1–specific therapeutics for use in transplantation.

Authors

Idelberto R. Badell, Maria C. Russell, Peter W. Thompson, Alexandra P. Turner, Tim A. Weaver, Jennifer M. Robertson, Jose G. Avila, Jose A. Cano, Brandi E. Johnson, Mingqing Song, Frank V. Leopardi, Sarah Swygert, Elizabeth A. Strobert, Mandy L. Ford, Allan D. Kirk, Christian P. Larsen

×

Figure 6

Combined LFA-1/CD28 blockade extends islet allograft survival.

Options: View larger image (or click on image) Download as PowerPoint
Combined LFA-1/CD28 blockade extends islet allograft survival.
(A) The e...
(A) The experimental design is shown. Diabetic rhesus monkeys were transplanted with allogeneic islets and received TS-1/22 induction alone, belatacept maintenance monotherapy, or a combination of both agents. After islet engraftment, rejection was defined as a FBG of more than 130 mg/dl on 2 consecutive days. (B) Recipients treated with TS-1/22 plus belatacept (filled squares) experienced significantly prolonged allograft function compared with that of TS-1/22–treated (open circles) animals or belatacept-treated (asterisks) animals. TS-1/22 was discontinued on POD 59 (white arrow). Statistical analysis using the log-rank test for graft survival among groups showed the superiority of the combined therapy as compared with TS-1/22 (P = 0.0082) and belatacept monotherapy (P = 0.0042). (C–E) Representative FBG graphs of (C) combined TS-1/22 plus belatacept, (D) TS-1/22 alone, and (E) belatacept monotherapy islet recipients show immediate resolution of hyperglycemia on the day of transplant, followed by variable periods of euglycemia (the representative TS-1/22 monotherapy graph is the same as in Figure 4D). Again, TS-1/22 was discontinued on POD 59 (white arrow). Individual group member survival times (in days) are listed in the top right corner of each corresponding representative graph.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts