Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes
Constantina Christodoulou, … , Gustavo Mostoslavsky, Darrell N. Kotton
Constantina Christodoulou, … , Gustavo Mostoslavsky, Darrell N. Kotton
Published May 2, 2011
Citation Information: J Clin Invest. 2011;121(6):2313-2325. https://doi.org/10.1172/JCI43853.
View: Text | PDF
Research Article

Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes

  • Text
  • PDF
Abstract

The directed differentiation of iPS and ES cells into definitive endoderm (DE) would allow the derivation of otherwise inaccessible progenitors for endodermal tissues. However, a global comparison of the relative equivalency of DE derived from iPS and ES populations has not been performed. Recent reports of molecular differences between iPS and ES cells have raised uncertainty as to whether iPS cells could generate autologous endodermal lineages in vitro. Here, we show that both mouse iPS and parental ES cells exhibited highly similar in vitro capacity to undergo directed differentiation into DE progenitors. With few exceptions, both cell types displayed similar surges in gene expression of specific master transcriptional regulators and global transcriptomes that define the developmental milestones of DE differentiation. Microarray analysis showed considerable overlap between the genetic programs of DE derived from ES/iPS cells in vitro and authentic DE from mouse embryos in vivo. Intriguingly, iPS cells exhibited aberrant silencing of imprinted genes known to participate in endoderm differentiation, yet retained a robust ability to differentiate into DE. Our results show that, despite some molecular differences, iPS cells can be efficiently differentiated into DE precursors, reinforcing their potential for development of cell-based therapies for diseased endoderm-derived tissues.

Authors

Constantina Christodoulou, Tyler A. Longmire, Steven S. Shen, Alice Bourdon, Cesar A. Sommer, Paul Gadue, Avrum Spira, Valerie Gouon-Evans, George J. Murphy, Gustavo Mostoslavsky, Darrell N. Kotton

×

Figure 6

Analysis of cell-type effects between ES and iPS cell samples, regardless of differentiation stage, reveals aberrant silencing of genes encoded by the Dlk1-Dio3–imprinted gene cluster on chromosome 12qF1.

Options: View larger image (or click on image) Download as PowerPoint
Analysis of cell-type effects between ES and iPS cell samples, regardles...
(A) Unsupervised clustering analysis of the top 111 transcripts differentially expressed due to cell-type effects, based on 2-way ANOVA with FDR< 0.001. Yellow highlighting indicates the 36 transcripts that localize to chromosome 12qF1 in the region of the Dlk1-Dio3 gene cluster. (B) Schematic representation of the mouse Dlk1-Dio3–imprinted gene cluster. (C) Validation of microarray analysis through qRT-PCR quantification of each indicated gene, normalized to 18S rRNA (n = 3; data shown as average ± SEM). (D) qRT-PCR analysis of Gtl2 expression kinetics during 15 days of endoderm differentiation, followed by hepatic lineage specification. During differentiation, Gtl2 expression is upregulated in ES cells, while remaining silenced in ST5 and ST8 iPS clones. (E) Mouse Gtl2 (AJ320506) pyrosequencing indicates aberrant DNA methylation of the Dlk1-Dio3 gene cluster in ST5 and ST8 iPS cell clones at day 0 as well as day 5, in contrast to that of ES cells and parental tail-tip fibroblasts prior to reprogramming. The graph indicates the global percentage of methylation of each of 29 CpG islands, spanning the Gtl2 IG-DMR region (Nt 81262-81567). TTFs, tail-tip fibroblasts.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts