Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle
Sanjeewa A. Goonasekera, Chi K. Lam, Douglas P. Millay, Michelle A. Sargent, Roger J. Hajjar, Evangelia G. Kranias, Jeffery D. Molkentin
Sanjeewa A. Goonasekera, Chi K. Lam, Douglas P. Millay, Michelle A. Sargent, Roger J. Hajjar, Evangelia G. Kranias, Jeffery D. Molkentin
View: Text | PDF
Research Article Muscle biology

Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle

  • Text
  • PDF
Abstract

Muscular dystrophies (MDs) comprise a group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. The primary defect common to most MDs involves disruption of the dystrophin-glycoprotein complex (DGC). This leads to sarcolemmal instability and Ca2+ influx, inducing cellular necrosis. Here we have shown that the dystrophic phenotype observed in δ-sarcoglycan–null (Sgcd–/–) mice and dystrophin mutant mdx mice is dramatically improved by skeletal muscle–specific overexpression of sarcoplasmic reticulum Ca2+ ATPase 1 (SERCA1). Rates of myofiber central nucleation, tissue fibrosis, and serum creatine kinase levels were dramatically reduced in Sgcd–/– and mdx mice with the SERCA1 transgene, which also rescued the loss of exercise capacity in Sgcd–/– mice. Adeno-associated virus–SERCA2a (AAV-SERCA2a) gene therapy in the gastrocnemius muscle of Sgcd–/– mice mitigated dystrophic disease. SERCA1 overexpression reversed a defect in sarcoplasmic reticulum Ca2+ reuptake that characterizes dystrophic myofibers and reduced total cytosolic Ca2+. Further, SERCA1 overexpression almost completely rescued the dystrophic phenotype in a mouse model of MD driven solely by Ca2+ influx. Mitochondria isolated from the muscle of SERCA1-Sgcd–/– mice were no longer swollen and calpain activation was reduced, suggesting protection from Ca2+-driven necrosis. Our results suggest a novel therapeutic approach using SERCA1 to abrogate the altered intracellular Ca2+ levels that underlie most forms of MD.

Authors

Sanjeewa A. Goonasekera, Chi K. Lam, Douglas P. Millay, Michelle A. Sargent, Roger J. Hajjar, Evangelia G. Kranias, Jeffery D. Molkentin

×

Figure 1

Overexpression of SERCA1 in skeletal muscle enhances Ca2+ cycling during EC coupling.

Options: View larger image (or click on image) Download as PowerPoint
Overexpression of SERCA1 in skeletal muscle enhances Ca2+ cycling during...
(A) Western blot analysis for SERCA1 expression in different muscle groups isolated from non-Tg (NTg) and SERCA1 Tg (Tg) mice at 3 months of age. Quad, quadriceps; Gas, gastrocnemius; Diaph, diaphragm. (B) H&E and Masson’s trichrome sections of quadriceps. Original magnification, ×200. (C) Representative traces of F340/F380 fluorescence ratio recordings from single FDB myofibers isolated from NTg and SERCA1 Tg mice in response to electrical stimulation. (D) Resting Ca2+ ratio, (E) time constant of decay (τ), and (F) peak Ca2+ transient amplitude in isolated myofibers from the indicated genotypes. *P < 0.05 compared with NTg mice; n = total number of fibers recorded from 4 animals in each genotype shown in the graphs, D–F.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts