Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
VIP blockade leads to microcephaly in mice via disruption of Mcph1-Chk1 signaling
Sandrine Passemard, … , Pierre Gressens, Vincent Lelièvre
Sandrine Passemard, … , Pierre Gressens, Vincent Lelièvre
Published July 1, 2011
Citation Information: J Clin Invest. 2011;121(8):3072-3087. https://doi.org/10.1172/JCI43824.
View: Text | PDF
Research Article Neuroscience

VIP blockade leads to microcephaly in mice via disruption of Mcph1-Chk1 signaling

  • Text
  • PDF
Abstract

Autosomal recessive primary microcephaly (MCPH) is a genetic disorder that causes a reduction of cortical outgrowth without severe interference with cortical patterning. It is associated with mutations in a number of genes encoding protein involved in mitotic spindle formation and centrosomal activities or cell cycle control. We have shown previously that blocking vasoactive intestinal peptide (VIP) during gestation in mice by using a VIP antagonist (VA) results in microcephaly. Here, we have shown that the cortical abnormalities caused by prenatal VA administration mimic the phenotype described in MCPH patients and that VIP blockade during neurogenesis specifically disrupts Mcph1 signaling. VA administration reduced neuroepithelial progenitor proliferation by increasing cell cycle length and promoting cell cycle exit and premature neuronal differentiation. Quantitative RT-PCR and Western blot showed that VA downregulated Mcph1. Inhibition of Mcph1 expression led to downregulation of Chk1 and reduction of Chk1 kinase activity. The inhibition of Mcph1 and Chk1 affected the expression of a specific subset of cell cycle–controlling genes and turned off neural stem cell proliferation in neurospheres. Furthermore, in vitro silencing of either Mcph1 or Chk1 in neurospheres mimicked VA-induced inhibition of cell proliferation. These results demonstrate that VIP blockade induces microcephaly through Mcph1 signaling and suggest that VIP/Mcph1/Chk1 signaling is key for normal cortical development.

Authors

Sandrine Passemard, Vincent El Ghouzzi, Hala Nasser, Catherine Verney, Guilan Vodjdani, Adrien Lacaud, Sophie Lebon, Marc Laburthe, Patrick Robberecht, Jeannette Nardelli, Shyamala Mani, Alain Verloes, Pierre Gressens, Vincent Lelièvre

×

Figure 9

The effects of VIP on neurosphere proliferation are abolished in the absence of Chk1.

Options: View larger image (or click on image) Download as PowerPoint
The effects of VIP on neurosphere proliferation are abolished in the abs...
(A and B) Chk1 expression levels assessed by quantitative RT-PCR on extracts from neurosphere-derived progenitors transduced by lentiviral-mediated–specific Chk1-specific shRNA. Knockdown of Chk1 gene expression by sequences shRNA1, shRNA2, and shRNA3 significantly reduces both mRNA levels (A) and protein contents (B), while sequence shRNA4 failed to induce any significant silencing. (C) BrdU incorporation in neurosphere-derived progenitors transduced by different control lentiviral vectors and the specific Chk1 shRNA1 and shRNA 2. Silencing the Chk1 gene obliterates VIP-induced mitogenic action in neurosphere-derived progenitors. (A) n = 3 per group, 1-way ANOVA, *P < 0.05; **P < 0.01. (B) n = 3 per group, unpaired t test. (C) n = 8 per group, unpaired t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts