Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
VIP blockade leads to microcephaly in mice via disruption of Mcph1-Chk1 signaling
Sandrine Passemard, … , Pierre Gressens, Vincent Lelièvre
Sandrine Passemard, … , Pierre Gressens, Vincent Lelièvre
Published July 1, 2011
Citation Information: J Clin Invest. 2011;121(8):3072-3087. https://doi.org/10.1172/JCI43824.
View: Text | PDF
Research Article Neuroscience

VIP blockade leads to microcephaly in mice via disruption of Mcph1-Chk1 signaling

  • Text
  • PDF
Abstract

Autosomal recessive primary microcephaly (MCPH) is a genetic disorder that causes a reduction of cortical outgrowth without severe interference with cortical patterning. It is associated with mutations in a number of genes encoding protein involved in mitotic spindle formation and centrosomal activities or cell cycle control. We have shown previously that blocking vasoactive intestinal peptide (VIP) during gestation in mice by using a VIP antagonist (VA) results in microcephaly. Here, we have shown that the cortical abnormalities caused by prenatal VA administration mimic the phenotype described in MCPH patients and that VIP blockade during neurogenesis specifically disrupts Mcph1 signaling. VA administration reduced neuroepithelial progenitor proliferation by increasing cell cycle length and promoting cell cycle exit and premature neuronal differentiation. Quantitative RT-PCR and Western blot showed that VA downregulated Mcph1. Inhibition of Mcph1 expression led to downregulation of Chk1 and reduction of Chk1 kinase activity. The inhibition of Mcph1 and Chk1 affected the expression of a specific subset of cell cycle–controlling genes and turned off neural stem cell proliferation in neurospheres. Furthermore, in vitro silencing of either Mcph1 or Chk1 in neurospheres mimicked VA-induced inhibition of cell proliferation. These results demonstrate that VIP blockade induces microcephaly through Mcph1 signaling and suggest that VIP/Mcph1/Chk1 signaling is key for normal cortical development.

Authors

Sandrine Passemard, Vincent El Ghouzzi, Hala Nasser, Catherine Verney, Guilan Vodjdani, Adrien Lacaud, Sophie Lebon, Marc Laburthe, Patrick Robberecht, Jeannette Nardelli, Shyamala Mani, Alain Verloes, Pierre Gressens, Vincent Lelièvre

×

Figure 4

VA acts by interfering with VIP/VPAC signaling pathway and PKA activation.

Options: View larger image (or click on image) Download as PowerPoint
VA acts by interfering with VIP/VPAC signaling pathway and PKA activatio...
(A) VIP receptors and VPAC1 and VPAC2 expression levels as assessed by quantitative RT-PCR performed from neurosphere-derived progenitors and E12/E16 telencephalon. VPAC1 and VPAC2 receptors are mainly expressed in early stages, while PAC1 expression increased throughout the development. (B–H) BrdU incorporation assay performed on E10.5 neurosphere-derived progenitors. VIP stimulates proliferation of E10.5 neurosphere-derived progenitors in a dose-dependent manner (B). This effect is completely abrogated by VA at concentrations as low as 0.1 nM (C). VA alone decreases proliferation of neurosphere-derived progenitors compared with PBS (D). VPAC1 (E and F) and VPAC2 (G) agonists mimic VIP-induced BrdU incorporation. VIP stimulatory effect on BrdU incorporation is mimicked by the adenylate-cyclase activator FSK but is inhibited by H89 or KT5920, 2 separate inhibitors of PKA (H). (n = 8 per group, unpaired t test, *P < 0.05, **P < 0.01, or ***P < 0.001 between treatments and controls; or #P < 0.05, ##P < 0.01, or ###P < 0.001 between VIP and other treatments).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts