Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
VIP blockade leads to microcephaly in mice via disruption of Mcph1-Chk1 signaling
Sandrine Passemard, … , Pierre Gressens, Vincent Lelièvre
Sandrine Passemard, … , Pierre Gressens, Vincent Lelièvre
Published July 1, 2011
Citation Information: J Clin Invest. 2011;121(8):3072-3087. https://doi.org/10.1172/JCI43824.
View: Text | PDF
Research Article Neuroscience

VIP blockade leads to microcephaly in mice via disruption of Mcph1-Chk1 signaling

  • Text
  • PDF
Abstract

Autosomal recessive primary microcephaly (MCPH) is a genetic disorder that causes a reduction of cortical outgrowth without severe interference with cortical patterning. It is associated with mutations in a number of genes encoding protein involved in mitotic spindle formation and centrosomal activities or cell cycle control. We have shown previously that blocking vasoactive intestinal peptide (VIP) during gestation in mice by using a VIP antagonist (VA) results in microcephaly. Here, we have shown that the cortical abnormalities caused by prenatal VA administration mimic the phenotype described in MCPH patients and that VIP blockade during neurogenesis specifically disrupts Mcph1 signaling. VA administration reduced neuroepithelial progenitor proliferation by increasing cell cycle length and promoting cell cycle exit and premature neuronal differentiation. Quantitative RT-PCR and Western blot showed that VA downregulated Mcph1. Inhibition of Mcph1 expression led to downregulation of Chk1 and reduction of Chk1 kinase activity. The inhibition of Mcph1 and Chk1 affected the expression of a specific subset of cell cycle–controlling genes and turned off neural stem cell proliferation in neurospheres. Furthermore, in vitro silencing of either Mcph1 or Chk1 in neurospheres mimicked VA-induced inhibition of cell proliferation. These results demonstrate that VIP blockade induces microcephaly through Mcph1 signaling and suggest that VIP/Mcph1/Chk1 signaling is key for normal cortical development.

Authors

Sandrine Passemard, Vincent El Ghouzzi, Hala Nasser, Catherine Verney, Guilan Vodjdani, Adrien Lacaud, Sophie Lebon, Marc Laburthe, Patrick Robberecht, Jeannette Nardelli, Shyamala Mani, Alain Verloes, Pierre Gressens, Vincent Lelièvre

×

Figure 10

Chk1 kinase activity and expression of key cell cycle regulators downstream of Chk1 are reduced by VA.

Options: View larger image (or click on image) Download as PowerPoint
Chk1 kinase activity and expression of key cell cycle regulators downstr...
(A) Chk1 kinase activity assessed by kinase essay on telencephalon or cortical extracts from E12 to P0 embryos and newborns that received VA, VIP, or both treatments. At the 3 embryonic ages, Chk1 kinase activity (mean ± SEM) follows the same time-dependent decrease in controls. VIP treatment stimulates Chk1 activity (n = 5 per group, run in duplicate, 1-way ANOVA, ##P < 0.01), while VA suppresses it (*P < 0.05, **P < 0.01, or ***P < 0.001). (B) Chk1 kinase activity on protein extracts isolated from neurosphere cultures after treatment with VIP or VIP plus VA or cAMP/PKA agents. VIP stimulates kinase activity in neurospheres; such an enhancement was counterbalanced by cotreatment VIP plus VA. H89 inhibited the kinase activity (**P < 0.01), while FSK enhanced it. (C–E) Transcription levels of specific key cell cycle regulators downstream of Chk1 (Cdc25, cyclin A/B Cdk1, and Cdk2 genes) assessed by quantitative RT-PCR. Only Cdc25, Cyclin B, and Cdk1 transcripts are significantly repressed (n = 8, 1-way ANOVA) by VA treatment, but no change is seen in Cdk2 and Cyclin A levels (not shown). (F–H) Similar experiments conducted in neurosphere-derived progenitors. VIP upregulates Cdc25 (F) Cyclin B (G), and Cdk1 (H) expression; this effect was inhibited by VA treatment. (I–K) Efficient Chk1 targeting by lentiviral-mediated vectors expressing shRNAs (1, -2, and -3) downregulated Cdc25 (I), cyclin B (J), and Cdk1 (K) expression (n = 3, run in duplicate, 1-way ANOVA).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts