Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A βIV-spectrin/CaMKII signaling complex is essential for membrane excitability in mice
Thomas J. Hund, … , Mark E. Anderson, Peter J. Mohler
Thomas J. Hund, … , Mark E. Anderson, Peter J. Mohler
Published September 27, 2010
Citation Information: J Clin Invest. 2010;120(10):3508-3519. https://doi.org/10.1172/JCI43621.
View: Text | PDF
Research Article

A βIV-spectrin/CaMKII signaling complex is essential for membrane excitability in mice

  • Text
  • PDF
Abstract

Ion channel function is fundamental to the existence of life. In metazoans, the coordinate activities of voltage-gated Na+ channels underlie cellular excitability and control neuronal communication, cardiac excitation-contraction coupling, and skeletal muscle function. However, despite decades of research and linkage of Na+ channel dysfunction with arrhythmia, epilepsy, and myotonia, little progress has been made toward understanding the fundamental processes that regulate this family of proteins. Here, we have identified βIV-spectrin as a multifunctional regulatory platform for Na+ channels in mice. We found that βIV-spectrin targeted critical structural and regulatory proteins to excitable membranes in the heart and brain. Animal models harboring mutant βIV-spectrin alleles displayed aberrant cellular excitability and whole animal physiology. Moreover, we identified a regulatory mechanism for Na+ channels, via direct phosphorylation by βIV-spectrin–targeted calcium/calmodulin-dependent kinase II (CaMKII). Collectively, our data define an unexpected but indispensable molecular platform that determines membrane excitability in the mouse heart and brain.

Authors

Thomas J. Hund, Olha M. Koval, Jingdong Li, Patrick J. Wright, Lan Qian, Jedidiah S. Snyder, Hjalti Gudmundsson, Crystal F. Kline, Nathan P. Davidson, Natalia Cardona, Matthew N. Rasband, Mark E. Anderson, Peter J. Mohler

×

Figure 3

βIV-spectrin is required for CaMKIIδ targeting.

Options: View larger image (or click on image) Download as PowerPoint
βIV-spectrin is required for CaMKIIδ targeting.
   
(A) βIV-spectrin org...
(A) βIV-spectrin organization in WT and qv3J animals. qv3J animals lacked a CaMKII-binding domain, but retained actin-, ankyrin-, and α-spectrin–binding domains. (B and C) Schematic of control GST–βIV-spectrin fusion protein encompassing spectrin repeats 13–17 and the CaMKII-binding domain (βIV-WT) and truncated mutant lacking CaMKII-binding domain (βIV-qv3J). (D) βIV-spectrin WT and qv3J GST fusion proteins were incubated with detergent-soluble rat heart lysate and analyzed by immunoblot (CaMKIIδ). L-type Ca2+ channel β2a subunit was also expressed as a GST fusion protein and used as positive control. CaMKIIδ bound to the β2a and WT GST fusion proteins, but not to the qv3J GST fusion protein. Lanes were run on the same gel but were noncontiguous (white line). (E) βIV-spectrin WT and qv3J GST fusion proteins retained binding activity for ankyrin-G. (F) Coimmunoprecipitation studies showing association of ankyrin-G and CaMKIIδ in WT, but not qv3J, hearts. (G) Expression of ankyrin-G, Nav1.5, CaMKIIδ, β-catenin, and N-cadherin in heart lysates from WT and qv3J animals. Actin is shown as loading control. (H–Q) Permeabilized adult rat cardiomyocytes from (H–L) WT and (M–Q) qv3J hearts were immunostained for (H and M) N-cadherin, (I and N) total CaMKIIδ, (J and O) CaMKII-phospho-T287, (K and P) βIV-spectrin, and (L and Q) Nav1.5. Localization of CaMKIIδ (total and phospho-T287) to the intercalated disc (white arrows) was disrupted in qv3J cardiomyocytes. Scale bars: 10 μm (H–Q).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts