Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Hyposecretion of fluid from tracheal submucosal glands of CFTR-deficient pigs
Nam Soo Joo, … , Monal Khansaheb, Jeffrey J. Wine
Nam Soo Joo, … , Monal Khansaheb, Jeffrey J. Wine
Published August 25, 2010
Citation Information: J Clin Invest. 2010;120(9):3161-3166. https://doi.org/10.1172/JCI43466.
View: Text | PDF
Research Article

Hyposecretion of fluid from tracheal submucosal glands of CFTR-deficient pigs

  • Text
  • PDF
Abstract

Cystic fibrosis (CF) results from mutations that disrupt CF transmembrane conductance regulator (CFTR), an anion channel found mainly in apical membranes of epithelial cells. CF leads to chronic infection of the airways with normally innocuous bacteria and fungi. Hypotheses to explain the pathophysiology of CF airways have been difficult to test because mouse models of CF do not develop human-like airway disease. The recent production of pigs lacking CFTR and pigs expressing the most common CF-causing CFTR mutant, ΔF508, provide another model that might help clarify the pathophysiology of CF airway disease. Here, we studied individual submucosal glands from 1-day-old piglets in situ in explanted tracheas, using optical methods to monitor mucus secretion rates from multiple glands in parallel. Secretion rates from control piglets (WT and CFTR+/–) and piglets with CF-like disease (CFTR–/– and CFTR–/ΔF508) were measured under 5 conditions: unstimulated (to determine basal secretion), stimulated with forskolin, stimulated with carbachol, stimulated with substance P, and, as a test for synergy, stimulated with forskolin and a low concentration of carbachol. Glands from piglets with CF-like disease responded qualitatively to all agonists like glands from human patients with CF, producing virtually no fluid in response to stimulation with forskolin and substantially less in response to all other agonists except carbachol. These data are a step toward determining whether gland secretory defects contribute to CF airway disease.

Authors

Nam Soo Joo, Hyung-Ju Cho, Monal Khansaheb, Jeffrey J. Wine

×

Figure 1

CF piglet glands show near-complete loss of Fsk-stimulated fluid secretion.

Options: View larger image (or click on image) Download as PowerPoint
CF piglet glands show near-complete loss of Fsk-stimulated fluid secreti...
(A) Example of mucus bubbles under oil, produced by 30 minutes’ stimulation with 3 μM Fsk in a WT or CF piglet trachea. Arrows denote selected mucus bubbles (19 in the WT field and 7 unambiguous bubbles in the CF field). Scale bars: 0.5 mm. (B) Representative plot of cumulative mucus volume as a function of time and stimulation with 3 μM Fsk for 12 glands in the trachea of a 1-day-old WT piglet. This is the same preparation shown in part in A. Inset shows near-0 response of 15 glands from a 1-day-old CF piglet. Fsk stimulation is represented by horizontal bars. (C) Secretory response rates for all glands tested with 3 μM Fsk. Each symbol represents a single gland; horizontal bars denote means of 104 control (median, 37.2 pl/min/gland) and 107 CF (median, 0 pl/min/gland) glands. Only 19 CF glands had measurable secretion in response to Fsk; 88 did not respond to Fsk, but were detected by their responses to subsequent stimulation. (D) Summary data for control and CF piglets tested with 3 μM Fsk (10–15 glands each; n = 9 per group). *P = 0.0002.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts