Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
T-cadherin is critical for adiponectin-mediated cardioprotection in mice
Martin S. Denzel, … , Pilar Ruiz-Lozano, Barbara Ranscht
Martin S. Denzel, … , Pilar Ruiz-Lozano, Barbara Ranscht
Published November 1, 2010
Citation Information: J Clin Invest. 2010;120(12):4342-4352. https://doi.org/10.1172/JCI43464.
View: Text | PDF
Research Article Cardiology

T-cadherin is critical for adiponectin-mediated cardioprotection in mice

  • Text
  • PDF
Abstract

The circulating, adipocyte-secreted hormone adiponectin (APN) exerts protective effects on the heart under stress conditions. The receptors binding APN to cardiac tissue, however, have remained elusive. Here, we report that the glycosyl phosphatidylinositol–anchored cell surface glycoprotein T-cadherin (encoded by Cdh13) protects against cardiac stress through its association with APN in mice. We observed extensive colocalization of T-cadherin and APN on cardiomyocytes in vivo. In T-cadherin–deficient mice, APN failed to associate with cardiac tissue, and its levels dramatically increased in the circulation. Pressure overload stress resulted in exacerbated cardiac hypertrophy in T-cadherin–null mice and paralleled corresponding defects in mice lacking APN. During ischemia-reperfusion injury, the absence of T-cadherin increased infarct size similar to that in APN-null mice. Myocardial AMPK is a major downstream protective signaling target of APN. In both cardiac hypertrophy and ischemia-reperfusion models, T-cadherin was necessary for APN-dependent AMPK phosphorylation. In APN-null mice, recombinant adenovirus-expressed APN reduced exaggerated hypertrophy and infarct size and restored AMPK phosphorylation as previously reported. In contrast, rescue was ineffective in mice lacking T-cadherin in addition to APN. These data suggest that T-cadherin protects from stress-induced pathological cardiac remodeling by binding APN and activating its cardioprotective functions.

Authors

Martin S. Denzel, Maria-Cecilia Scimia, Philine M. Zumstein, Kenneth Walsh, Pilar Ruiz-Lozano, Barbara Ranscht

×

Figure 4

Long-term TAC leads to dilation and reduced contractility in Tcad-KO and APN-KO hearts.

Options: View larger image (or click on image) Download as PowerPoint
Long-term TAC leads to dilation and reduced contractility in Tcad-KO and...
(A) Representative images of trichrome-stained WT, Tcad-KO, and APN-KO hearts 28 days after TAC surgery. Scale bar: 2 mm. (B) HW/BW ratios. (C) Representative images from TUNEL-stained heart sections in WT, Tcad-KO, and APN-KO hearts, with quantification of TUNEL-positive area of whole heart sections. Scale bar: 20 μm. (D) Representative images of CD31-stained heart sections. Quantification was carried out in the free wall of the LV by counting number of capillaries per high-power field. Scale bar: 5 μm. (E) Fractional shortening (FS) was significantly reduced in Tcad-KO and APN-KO animals. (F) LV inner diameter in diastole (LVIDd) was significantly increased in Tcad-KO and APN-KO mice. (B–F) n = 4 (WT and Tcad-KO); 3 (APN-KO). *P < 0.05, **P < 0.01 versus WT.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts