Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cytokinesis failure occurs in Fanconi anemia pathway–deficient murine and human bone marrow hematopoietic cells
Patrizia Vinciguerra, … , David Pellman, Alan D. D’Andrea
Patrizia Vinciguerra, … , David Pellman, Alan D. D’Andrea
Published October 1, 2010
Citation Information: J Clin Invest. 2010;120(11):3834-3842. https://doi.org/10.1172/JCI43391.
View: Text | PDF
Research Article

Cytokinesis failure occurs in Fanconi anemia pathway–deficient murine and human bone marrow hematopoietic cells

  • Text
  • PDF
Abstract

Fanconi anemia (FA) is a genomic instability disorder characterized by bone marrow failure and cancer predisposition. FA is caused by mutations in any one of several genes that encode proteins cooperating in a repair pathway and is required for cellular resistance to DNA crosslinking agents. Recent studies suggest that the FA pathway may also play a role in mitosis, since FANCD2 and FANCI, the 2 key FA proteins, are localized to the extremities of ultrafine DNA bridges (UFBs), which link sister chromatids during cell division. However, whether FA proteins regulate cell division remains unclear. Here we have shown that FA pathway–deficient cells display an increased number of UFBs compared with FA pathway–proficient cells. The UFBs were coated by BLM (the RecQ helicase mutated in Bloom syndrome) in early mitosis. In contrast, the FA protein FANCM was recruited to the UFBs at a later stage. The increased number of bridges in FA pathway–deficient cells correlated with a higher rate of cytokinesis failure resulting in binucleated cells. Binucleated cells were also detectable in primary murine FA pathway–deficient hematopoietic stem cells (HSCs) and bone marrow stromal cells from human patients with FA. Based on these observations, we suggest that cytokinesis failure followed by apoptosis may contribute to bone marrow failure in patients with FA.

Authors

Patrizia Vinciguerra, Susana A. Godinho, Kalindi Parmar, David Pellman, Alan D. D’Andrea

×

Figure 3

Disruption of the FA pathway results in cytokinesis failure and an increase in multinucleated cells.

Options: View larger image (or click on image) Download as PowerPoint
Disruption of the FA pathway results in cytokinesis failure and an incre...
(A) FA-A and FA-G fibroblasts and corrected counterparts, as well as shScramble, shFANCA, and shFANCI cells, were stained for microtubules and DNA. Mononucleated as well as bi- and multinucleated cells were scored, and the frequency of multinucleated cells (i.e., bi- and multi-) for each type was calculated. (B) Frequency of cytokinesis failure in shScramble and shFANCA cells, followed for 24 hours by live cell imaging. (C) Still frames of representative successful and failed cytokinesis; see Supplemental Movies 1 and 2, respectively. Time is indicated in hours and minutes. Scale bars: 10 μM. (D) HeLa cells transiently knocked down for a panel of Fanconi genes as well as BLM were analyzed for the presence of bi- and multinucleated cells. Data are mean and SEM from 3 independent experiments (every siRNA was independently compared with siLacZ). (E) Control cells and cells stably knocked down for FANCM, complemented with the WT FANCM cDNA, and expressing FANCMK117R were analyzed for the presence of bi- and multinucleated cells. Numbers within bars denote number of mitotic cells analyzed. ***P < 0.01, Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts