Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MAPK phosphatase–3 promotes hepatic gluconeogenesis through dephosphorylation of forkhead box O1 in mice
Zhidan Wu, … , Guozhi Xiao, Haiyan Xu
Zhidan Wu, … , Guozhi Xiao, Haiyan Xu
Published October 1, 2010
Citation Information: J Clin Invest. 2010;120(11):3901-3911. https://doi.org/10.1172/JCI43250.
View: Text | PDF
Research Article Metabolism

MAPK phosphatase–3 promotes hepatic gluconeogenesis through dephosphorylation of forkhead box O1 in mice

  • Text
  • PDF
Abstract

Insulin resistance results in dysregulated hepatic gluconeogenesis that contributes to obesity-related hyperglycemia and progression of type 2 diabetes mellitus (T2DM). Recent studies show that MAPK phosphatase–3 (MKP-3) promotes gluconeogenic gene transcription in hepatoma cells, but little is known about the physiological role of MKP-3 in vivo. Here, we have shown that expression of MKP-3 is markedly increased in the liver of diet-induced obese mice. Consistent with this, adenovirus-mediated MKP-3 overexpression in lean mice promoted gluconeogenesis and increased fasting blood glucose levels. Conversely, shRNA knockdown of MKP-3 in both lean and obese mice resulted in decreased fasting blood glucose levels. In vitro experiments identified forkhead box O1 (FOXO1) as a substrate for MKP-3. MKP-3–mediated dephosphorylation of FOXO1 at Ser256 promoted its nuclear translocation and subsequent recruitment to the promoters of key gluconeogenic genes. In addition, we showed that PPARγ coactivator–1α (PGC-1α) acted downstream of FOXO1 to mediate MKP-3–induced gluconeogenesis. These data indicate that MKP-3 is an important regulator of hepatic gluconeogenesis in vivo and suggest that inhibition of MKP-3 activity may provide new therapies for T2DM.

Authors

Zhidan Wu, Ping Jiao, Xueming Huang, Bin Feng, Yajun Feng, Shengyong Yang, Phillip Hwang, Jing Du, Yaohui Nie, Guozhi Xiao, Haiyan Xu

×

Figure 7

Model illustrating the working hypothesis of MKP-3–induced gluconeogenesis.

Options: View larger image (or click on image) Download as PowerPoint
Model illustrating the working hypothesis of MKP-3–induced gluconeogenes...
Increased expression of MKP-3, induced either by glucocorticoids or insulin-resistant state such as obesity, will decrease phosphorylation of FOXO1 on Ser256, which subsequently promotes FOXO1 translocation from cytosol to nucleus. Activated FOXO1 increases transcription of Pgc1a and also interacts with PGC-1α to initiate the gluconeogenic program.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts