Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MAPK phosphatase–3 promotes hepatic gluconeogenesis through dephosphorylation of forkhead box O1 in mice
Zhidan Wu, … , Guozhi Xiao, Haiyan Xu
Zhidan Wu, … , Guozhi Xiao, Haiyan Xu
Published October 1, 2010
Citation Information: J Clin Invest. 2010;120(11):3901-3911. https://doi.org/10.1172/JCI43250.
View: Text | PDF
Research Article Metabolism

MAPK phosphatase–3 promotes hepatic gluconeogenesis through dephosphorylation of forkhead box O1 in mice

  • Text
  • PDF
Abstract

Insulin resistance results in dysregulated hepatic gluconeogenesis that contributes to obesity-related hyperglycemia and progression of type 2 diabetes mellitus (T2DM). Recent studies show that MAPK phosphatase–3 (MKP-3) promotes gluconeogenic gene transcription in hepatoma cells, but little is known about the physiological role of MKP-3 in vivo. Here, we have shown that expression of MKP-3 is markedly increased in the liver of diet-induced obese mice. Consistent with this, adenovirus-mediated MKP-3 overexpression in lean mice promoted gluconeogenesis and increased fasting blood glucose levels. Conversely, shRNA knockdown of MKP-3 in both lean and obese mice resulted in decreased fasting blood glucose levels. In vitro experiments identified forkhead box O1 (FOXO1) as a substrate for MKP-3. MKP-3–mediated dephosphorylation of FOXO1 at Ser256 promoted its nuclear translocation and subsequent recruitment to the promoters of key gluconeogenic genes. In addition, we showed that PPARγ coactivator–1α (PGC-1α) acted downstream of FOXO1 to mediate MKP-3–induced gluconeogenesis. These data indicate that MKP-3 is an important regulator of hepatic gluconeogenesis in vivo and suggest that inhibition of MKP-3 activity may provide new therapies for T2DM.

Authors

Zhidan Wu, Ping Jiao, Xueming Huang, Bin Feng, Yajun Feng, Shengyong Yang, Phillip Hwang, Jing Du, Yaohui Nie, Guozhi Xiao, Haiyan Xu

×

Figure 5

FOXO1 is a substrate and downstream mediator of MKP-3.

Options: View larger image (or click on image) Download as PowerPoint
FOXO1 is a substrate and downstream mediator of MKP-3.
(A) Effect of MKP...
(A) Effect of MKP-3 overexpression on FOXO1 nuclear translocation. (B) Co-immunoprecipitation of MKP-3 and Flag-FOXO1 in overexpression study. (C) Effect of MKP-3 overexpression on Flag-FOXO1 phosphorylation. (D) Co-immunoprecipitation of endogenous MKP-3 and FOXO1. (E) GST-pull-down study. (F) In vitro dephosphorylation of endogenous FOXO1 immunoprecipitated from insulin-stimulated Fao cells by MKP-3. (G) Nuclear FOXO1 content in lean mice injected with Ad-shGFP or Ad-shMKP-3 in the fasted condition (n = 7 each group). (H) Cytosolic FOXO1 Ser256 phosphorylation in mice as described in G. (I) Nuclear FOXO1 content in DIO mice injected with Ad-shGFP or Ad-shMKP-3 in the fasted condition (n = 5 each group). *P < 0.05, MKP-3–overexpressing versus vector-overexpressing cells. Ins, insulin; Vec, vector.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts