Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Repeated TLR9 stimulation results in macrophage activation syndrome–like disease in mice
Edward M. Behrens, … , Taku Kambayashi, Gary A. Koretzky
Edward M. Behrens, … , Taku Kambayashi, Gary A. Koretzky
Published May 16, 2011
Citation Information: J Clin Invest. 2011;121(6):2264-2277. https://doi.org/10.1172/JCI43157.
View: Text | PDF
Research Article Immunology

Repeated TLR9 stimulation results in macrophage activation syndrome–like disease in mice

  • Text
  • PDF
Abstract

Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are 2 similar diseases characterized by a cytokine storm, overwhelming inflammation, multiorgan dysfunction, and death. Animal models of HLH suggest that disease is driven by IFN-γ produced by CD8+ lymphocytes stimulated by persistent antigen exposure. In these models and patients with “primary” HLH, the antigen persists due to genetic defects, resulting in ineffective cytotoxic responses by CD8+ T cells and poor pathogen clearance. However, infectious triggers are often not identified in patients with MAS, and some patients with HLH or MAS lack defects in cytotoxic T cell killing. Herein, we show that repeated stimulation of TLR9 produced an HLH/MAS-like syndrome on a normal genetic background, without exogenous antigen. Like previous HLH models, TLR9-induced MAS was IFN-γ dependent; however, unlike other models, disease did not require lymphocytes. We further showed that IL-10 played a protective role in this model and that blocking IL-10 signaling led to the development of hemophagocytosis. IL-10 may therefore be an important target for the development of effective therapeutics for MAS. Our data provide insight into MAS-like syndromes in patients with inflammatory diseases in which there is chronic innate immune activation but no genetic defects in cytotoxic cell function.

Authors

Edward M. Behrens, Scott W. Canna, Katharine Slade, Sheila Rao, Portia A. Kreiger, Michele Paessler, Taku Kambayashi, Gary A. Koretzky

×

Figure 8

IL-10 receptor blockade results in a more severe MAS-like phenotype with the presence of hemophagocytosis.

Options: View larger image (or click on image) Download as PowerPoint
IL-10 receptor blockade results in a more severe MAS-like phenotype with...
(A) Serum IL-10 (dotted line) and IFN-γ (solid line) levels were measured by ELISA over the course of repeated CpG injections. (B) Serum IL-10 levels were measured by ELISA at day 10 of repeated CpG injection in wild-type, Ifng–/–, and Rag2–/– mice. (C–F) Mice were given repeated CpG or PBS injections according to the same schedule as in Figure 1. Mice were given concurrent injections of isotype or anti–IL-10R antibody with each dose. (C) Daily weights were measured, (D) complete blood count was performed on day 5, and (E) splenic weight and (F) serum ferritin were measured at sacrifice at day 6, when most mice receiving anti–IL-10R treatment became moribund. (G) Livers taken at sacrifice on day 6 were stained by H&E. Representative sections are shown at an original magnification of ×100. (H) Splenic touch preparations were made at sacrifice on day 6, and peripheral blood smears made at the time of complete blood count on day 5 were stained by Wright-Giemsa and evaluated for hemophagocytosis. Representative fields (original magnification, ×1,000 fields) are shown for mice receiving both CpG and anti–IL-10R antibody. All results are representative of 3–4 experiments. Individual symbols each represent 1 mouse, with the horizontal lines representing the mean values.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts