Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Glaucoma: genes, phenotypes, and new directions for therapy
Bao Jian Fan, Janey L. Wiggs
Bao Jian Fan, Janey L. Wiggs
Published September 1, 2010
Citation Information: J Clin Invest. 2010;120(9):3064-3072. https://doi.org/10.1172/JCI43085.
View: Text | PDF
Review

Glaucoma: genes, phenotypes, and new directions for therapy

  • Text
  • PDF
Abstract

Glaucoma, a leading cause of blindness worldwide, is characterized by progressive optic nerve damage, usually associated with intraocular pressure. Although the clinical progression of the disease is well defined, the molecular events responsible for glaucoma are currently poorly understood and current therapeutic strategies are not curative. This review summarizes the human genetics and genomic approaches that have shed light on the complex inheritance of glaucoma genes and the potential for gene-based and cellular therapies that this research makes possible.

Authors

Bao Jian Fan, Janey L. Wiggs

×

Figure 1

Schematic diagram of eye structures involved in aqueous humor dynamics.

Options: View larger image (or click on image) Download as PowerPoint
Schematic diagram of eye structures involved in aqueous humor dynamics.
...
Aqueous humor is produced by the ciliary body and passes from the posterior chamber through the pupil into the anterior chamber into the trabecular meshwork, Schlemm’s canal, and finally into the episcleral venous system. The alternative path is the “uveoscleral outflow” that drains fluid through the ciliary muscle into the supraciliary and suprachoroidal spaces and then out of the eye through the sclera. Approximately 80% of aqueous humor is removed by the conventional trabecular meshwork pathway, and the remainder is removed by the uveoscleral pathway. Elevated IOP in glaucoma is caused by alterations to the conventional trabecular meshwork pathway. The figure adapted from Berwick Eye and Surgicentre ( www.berwickeye.com.au/glaucoma.htm).
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts