Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans
Bernhard Bielesz, … , Volker H. Haase, Katalin Susztak
Bernhard Bielesz, … , Volker H. Haase, Katalin Susztak
Published October 18, 2010
Citation Information: J Clin Invest. 2010;120(11):4040-4054. https://doi.org/10.1172/JCI43025.
View: Text | PDF
Research Article Nephrology

Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans

  • Text
  • PDF
Abstract

Chronic kidney disease is a leading cause of death in the United States. Tubulointerstitial fibrosis (TIF) is considered the final common pathway leading to end-stage renal disease (ESRD). Here, we used pharmacologic, genetic, in vivo, and in vitro experiments to show that activation of the Notch pathway in tubular epithelial cells (TECs) in patients and in mouse models of TIF plays a role in TIF development. Expression of Notch in renal TECs was found to be both necessary and sufficient for TIF development. Genetic deletion of the Notch pathway in TECs reduced renal fibrosis. Consistent with this, TEC-specific expression of active Notch1 caused rapid development of TIF. Pharmacologic inhibition of Notch activation using a γ-secretase inhibitor ameliorated TIF. In summary, our experiments establish that epithelial injury and Notch signaling play key roles in fibrosis development and indicate that Notch blockade may be a therapeutic strategy to reduce fibrosis and ESRD development.

Authors

Bernhard Bielesz, Yasemin Sirin, Han Si, Thiruvur Niranjan, Antje Gruenwald, Seonho Ahn, Hideki Kato, James Pullman, Manfred Gessler, Volker H. Haase, Katalin Susztak

×

Figure 1

Increased expression of Notch pathway in kidneys of mouse models of TIF and patients with TIF.

Options: View larger image (or click on image) Download as PowerPoint
Increased expression of Notch pathway in kidneys of mouse models of TIF ...
(A) Relative mRNA amount of Notch1, Notch2, Notch3, Jag1, Dll1, Dll4, Hes1, and HeyL determined by QRT-PCR in FA-injected (10-week-old male FvB) mice 1, 3, 5, 7, and 14 days following the injection. Kidneys were isolated individually from each animal sacrificed at different time points after FA injection (n > 3 per time point). Gene expression level was normalized to mRNA levels of control animals, and significance was calculated compared with controls. (B) Representative immunostaining images of cleaved Notch1–stained kidney sections of control and FA-injected mice. ICN1 expression in FA-treated kidneys increased compared with controls. (C) Double immunofluorescence analysis with Jag1 (Cy3, red) and Lotus Tetragonolobus lectin (LTL; FITC, green) of control and 1 week after FA treatment. Jag1 expression increased after FA injection compared with control animals. (D and E) Representative images of (D) cleaved NOTCH1 and (E) JAG1 immunostaining from a control healthy individual and from a patient with diabetic kidney disease (DKD) with marked TIF. *P < 0.05, Student’s t test with Bonferroni correction. Scale bars: 20 μm (B, left, and D, right), 10 μm (B, right), 50 μm (C, D, left, and E).
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts