Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice
Denghong Zhang, … , Nahum Sonenberg, Gianluigi Condorelli
Denghong Zhang, … , Nahum Sonenberg, Gianluigi Condorelli
Published July 19, 2010
Citation Information: J Clin Invest. 2010;120(8):2805-2816. https://doi.org/10.1172/JCI43008.
View: Text | PDF | Corrigendum
Research Article Cardiology

MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice

  • Text
  • PDF
Abstract

Mechanistic target of rapamycin (MTOR) plays a critical role in the regulation of cell growth and in the response to energy state changes. Drugs inhibiting MTOR are increasingly used in antineoplastic therapies. Myocardial MTOR activity changes during hypertrophy and heart failure (HF). However, whether MTOR exerts a positive or a negative effect on myocardial function remains to be fully elucidated. Here, we show that ablation of Mtor in the adult mouse myocardium results in a fatal, dilated cardiomyopathy that is characterized by apoptosis, autophagy, altered mitochondrial structure, and accumulation of eukaryotic translation initiation factor 4E–binding protein 1 (4E-BP1). 4E-BP1 is an MTOR-containing multiprotein complex-1 (MTORC1) substrate that inhibits translation initiation. When subjected to pressure overload, Mtor-ablated mice demonstrated an impaired hypertrophic response and accelerated HF progression. When the gene encoding 4E-BP1 was ablated together with Mtor, marked improvements were observed in apoptosis, heart function, and survival. Our results demonstrate a role for the MTORC1 signaling network in the myocardial response to stress. In particular, they highlight the role of 4E-BP1 in regulating cardiomyocyte viability and in HF. Because the effects of reduced MTOR activity were mediated through increased 4E-BP1 inhibitory activity, blunting this mechanism may represent a novel therapeutic strategy for improving cardiac function in clinical HF.

Authors

Denghong Zhang, Riccardo Contu, Michael V.G. Latronico, Jianlin Zhang, Roberto Rizzi, Daniele Catalucci, Shigeki Miyamoto, Katherine Huang, Marcello Ceci, Yusu Gu, Nancy D. Dalton, Kirk L. Peterson, Kun-Liang Guan, Joan Heller Brown, Ju Chen, Nahum Sonenberg, Gianluigi Condorelli

×

Figure 2

Analysis of cell death.

Options: View larger image (or click on image) Download as PowerPoint
Analysis of cell death.
(A) Image analysis of TUNEL-stained sections rev...
(A) Image analysis of TUNEL-stained sections revealed that the Mtor-cKO heart is subjected to a progressive loss of cardiomyocytes because of the induction of apoptosis (mean ± SD; n = 3 per group). (B) Representative Western blot for cleaved (clv) Parp. Cleaved Parp expression is increased in the heart of Mtor-cKO mice with respect to WT-Cre control littermates at 4 weeks after TMX administration. α-Tubulin was used as an internal loading control. (C) Western blot for CoxIV expression (top). Gapdh was used as an internal loading control. Densitometric analysis of CoxIV expression (mean ± SD) in extracts from WT-Cre controls at 4 weeks after TMX administration and from Mtor-cKO mice at 1, 2, and 4 weeks after TMX administration (bottom). (D) Representative transmission electron micrographs of Mtor-cKO and WT-Cre control hearts, both at 2 weeks after TMX administration. Mtor-cKO LV myocardium presents with sarcomeric disarray and swollen mitochondria (arrowheads), whereas that of control has a normal ultrastructure. Original magnification: ×2,000. (E) Image analysis reveals that the fibrotic index of the Mtor-cKO heart is increased already at 1 week after TMX administration and becomes significantly increased thereafter (mean ± SD, n = 3 per group). (F) Western blot of some autophagy-related proteins. Expression of the 4 proteins analyzed is increased in the Mtor-cKO heart with respect to that of the WT-Cre control at 1 week after TMX administration. (G) Representative transmission electron micrographs of WT-Cre control and Mtor-cKO heart, both at 1 week after TMX administration. Autophagic bodies (arrowheads) were observed in Mtor-cKO myocardium. Original magnification: ×4,000; inset, ×2,000.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts