Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways
Robert J. Lee, J. Kevin Foskett
Robert J. Lee, J. Kevin Foskett
Published August 25, 2010
Citation Information: J Clin Invest. 2010;120(9):3137-3148. https://doi.org/10.1172/JCI42992.
View: Text | PDF
Research Article

cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways

  • Text
  • PDF
Abstract

Cystic fibrosis (CF), which is caused by mutations in CFTR, affects many tissues, including the lung. Submucosal gland serous acinar cells are primary sites of fluid secretion and CFTR expression in the lung. Absence of CFTR in these cells may contribute to CF lung pathogenesis by disrupting fluid secretion. Here, we have isolated primary serous acinar cells from wild-type and CFTR–/– pigs and humans without CF to investigate the cellular mechanisms and regulation of fluid secretion by optical imaging. Porcine and human serous cells secrete fluid in response to vasoactive intestinal polypeptide (VIP) and other agents that raise intracellular cAMP levels; here, we have demonstrated that this requires CFTR and a cAMP-dependent rise in intracellular Ca2+ concentration ([Ca2+]i). Importantly, cAMP induced the release of Ca2+ from InsP3-sensitive Ca2+ stores also responsive to cAMP-independent agonists such as cholinergic, histaminergic, and purinergic agonists that stimulate CFTR-independent fluid secretion. This provides two types of synergism that strongly potentiated cAMP-mediated fluid secretion but differed in their CFTR dependencies. First, CFTR-dependent secretion was strongly potentiated by low VIP and carbachol concentrations that individually were unable to stimulate secretion. Second, higher VIP concentrations more strongly potentiated the [Ca2+]i responses, enabling ineffectual levels of cholinergic stimulation to strongly activate CFTR-independent fluid secretion. These results identify important molecular mechanisms of cAMP-dependent secretion, including a requirement for Ca2+ signaling, and suggest new therapeutic approaches to correct defective submucosal gland secretion in CF.

Authors

Robert J. Lee, J. Kevin Foskett

×

Figure 1

VIP-stimulated porcine serous cell secretion requires cAMP-dependent Ca2+ signaling.

Options: View larger image (or click on image) Download as PowerPoint
VIP-stimulated porcine serous cell secretion requires cAMP-dependent Ca2...
(A and B) Representative traces showing 1 μM VIP-evoked [Ca2+]i (triangles) and cell volume (circles; normalized to volume at time = 0 [V/Vo]) responses, which were reproducible (B). (C) Cell volume and [Cl–]i were linearly correlated during VIP and forskolin exposure. 75 points plotted from 6 forskolin experiments (squares) and 82 points from 5 VIP experiments (circles). SPQ fluorescence changes (Supplemental Figure 1) converted to [Cl–]i as described (3, 38). (D) Representative trace showing transient [Ca2+]i elevation and shrinkage during VIP exposure in 0-Ca2+o. (E–F) After depletion of Ca2+ stores by repeated stimulation with 100 μM CCh in 0-Ca2+o (E) or in BAPTA-loaded [Ca2+]i-buffered cells (F), VIP exposure in 0-Ca2+ resulted in neither [Ca2+]i elevation nor shrinkage. (G) Cells loaded with SNARF-5F-AM (which does not chelate [Ca2+]i) exhibited normal [Ca2+]i elevation (134 ± 17 nM) and shrinkage (17% ± 2% within 130 ± 22 s; n = 4; NS compared with VIP/0-Ca2+ stimulation as in Figure 1D). (H) Forskolin (10 μM) caused concomitant shrinkage (15% ± 2%; n = 6) and [Ca2+]i elevation (130 ± 11 nM; n = 10; values NS compared with 1 μM VIP). (I) IMBX (250 μM) caused simultaneous [Ca2+]i elevation (97 ± 10 nM; n = 3) and shrinkage (18% ± 2%; values NS compared with 1 μM VIP). (J) VIP-stimulated responses were abolished by H89; responses to 1 μM CCh remained intact.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts