Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Oligospermic infertility associated with an androgen receptor mutation that disrupts interdomain and coactivator (TIF2) interactions
Farid J. Ghadessy, … , Mark A. Trifiro, Eu Leong Yong
Farid J. Ghadessy, … , Mark A. Trifiro, Eu Leong Yong
Published June 1, 1999
Citation Information: J Clin Invest. 1999;103(11):1517-1525. https://doi.org/10.1172/JCI4289.
View: Text | PDF
Article

Oligospermic infertility associated with an androgen receptor mutation that disrupts interdomain and coactivator (TIF2) interactions

  • Text
  • PDF
Abstract

Structural changes in the androgen receptor (AR) are one of the causes of defective spermatogenesis. We screened the AR gene of 173 infertile men with impaired spermatogenesis and identified 3 of them, unrelated, who each had a single adenine→guanine transition that changed codon 886 in exon 8 from methionine to valine. This mutation was significantly associated with the severely oligospermic phenotype and was not detected in 400 control AR alleles. Despite the location of this substitution in the ligand-binding domain (LBD) of the AR, neither the genital skin fibroblasts of the subjects nor transfected cell types expressing the mutant receptor had any androgen-binding abnormality. However, the mutant receptor had a consistently (approximately 50%) reduced capacity to transactivate each of 2 different androgen-inducible reporter genes in 3 different cell lines. Deficient transactivation correlated with reduced binding of mutant AR complexes to androgen response elements. Coexpression of AR domain fragments in mammalian and yeast two-hybrid studies suggests that the mutation disrupts interactions of the LBD with another LBD, with the NH2-terminal transactivation domain, and with the transcriptional intermediary factor TIF2. These data suggest that a functional element centered around M886 has a role, not for ligand binding, but for interdomain and coactivator interactions culminating in the formation of a normal transcription complex.

Authors

Farid J. Ghadessy, Joyce Lim, Abdullah A.R. Abdullah, Valerie Panet-Raymond, Chee Keong Choo, Rose Lumbroso, Thein G. Tut, Bruce Gottlieb, Leonard Pinsky, Mark A. Trifiro, Eu Leong Yong

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
(a) DNA mobility gel shift assay. WT (W) or mutant (M) receptors were ex...
(a) DNA mobility gel shift assay. WT (W) or mutant (M) receptors were expressed in COS-7 cells and exposed to 10 nM (lanes 1 and 2) or 100 nM (lanes 3–12) DHT. Equivalent quantities of immunoreactive AR from the cell extracts were added to binding reactions containing 32P-labeled synthetic ARE (lanes 1–10) or ERE (lanes 11 and 12) oligonucleotide sequences. Excess unlabeled ARE (lanes 5 and 6), ERE (lanes 7 and 8), or Oct (lanes 9 and 10) oligonucleotides were added as competitor DNA to demonstrate the specificity of the binding reaction. The dark band at the bottom represents unbound 32P-labeled DNA. (b) Immunoblot of WT or mutant receptors used in gel shift assay. Five microliters of representative cell extract (used in the gel shift assay depicted in Figure 5a) was exposed to either 10 or 100 nM of DHT and was separated on an SDS-PAGE gel. AR protein was identified with a specific antibody (PG-21). (c) Quantification of binding to AREs. Receptors were expressed in COS cells, exposed to [3H]MB and equivalent quantities (50,000 dpm) of [3H]MB-AR complexes incubated with 150 pmol of either biotin-labeled natural ARE (an ARE from MMTV-LTR) or synthetic ARE in 2 independent series of experiments. Streptavidin-biotin–bound AREs were collected by centrifugation, and [3H]MB-labeled receptor bound to the AREs was quantified by scintillation counting. Known DNA binding–domain mutants (ΔF582, ΔR615) with severe impairment of DNA binding were used for comparison. In the right panel, background counts were lowered by treating the lysate with dextran-coated charcoal and by centrifugation at 100,000 g for 1 hour. Assays using mock-transfected cells showed minimal background activity. Each data point was the mean of 2 experiments, and bars indicate their range.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts