Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Identification of SOX3 as an XX male sex reversal gene in mice and humans
Edwina Sutton, … , Robin Lovell-Badge, Paul Thomas
Edwina Sutton, … , Robin Lovell-Badge, Paul Thomas
Published December 22, 2010
Citation Information: J Clin Invest. 2011;121(1):328-341. https://doi.org/10.1172/JCI42580.
View: Text | PDF
Research Article Development

Identification of SOX3 as an XX male sex reversal gene in mice and humans

  • Text
  • PDF
Abstract

Sex in mammals is genetically determined and is defined at the cellular level by sex chromosome complement (XY males and XX females). The Y chromosome–linked gene sex-determining region Y (SRY) is believed to be the master initiator of male sex determination in almost all eutherian and metatherian mammals, functioning to upregulate expression of its direct target gene Sry-related HMG box–containing gene 9 (SOX9). Data suggest that SRY evolved from SOX3, although there is no direct functional evidence to support this hypothesis. Indeed, loss-of-function mutations in SOX3 do not affect sex determination in mice or humans. To further investigate Sox3 function in vivo, we generated transgenic mice overexpressing Sox3. Here, we report that in one of these transgenic lines, Sox3 was ectopically expressed in the bipotential gonad and that this led to frequent complete XX male sex reversal. Further analysis indicated that Sox3 induced testis differentiation in this particular line of mice by upregulating expression of Sox9 via a similar mechanism to Sry. Importantly, we also identified genomic rearrangements within the SOX3 regulatory region in three patients with XX male sex reversal. Together, these data suggest that SOX3 and SRY are functionally interchangeable in sex determination and support the notion that SRY evolved from SOX3 via a regulatory mutation that led to its de novo expression in the early gonad.

Authors

Edwina Sutton, James Hughes, Stefan White, Ryohei Sekido, Jacqueline Tan, Valerie Arboleda, Nicholas Rogers, Kevin Knower, Lynn Rowley, Helen Eyre, Karine Rizzoti, Dale McAninch, Joao Goncalves, Jennie Slee, Erin Turbitt, Damien Bruno, Henrik Bengtsson, Vincent Harley, Eric Vilain, Andrew Sinclair, Robin Lovell-Badge, Paul Thomas

×

Figure 6

The Sr transgene has integrated upstream of Aldh1a1 on chromosome 19.

Options: View larger image (or click on image) Download as PowerPoint
The Sr transgene has integrated upstream of Aldh1a1 on chromosome 19.
  ...
(A) Schematic representation of transgene insertion site on chromosome 19 illustrating PCR primer position (black arrows), Southern probe (red), and relevant restriction sites. (B) FISH analysis of Tg/+ XY metaphase chromosomes. Sox3 transgene (modified RP23-174O19 BAC) and chromosome 19 (RP23-142D22 BAC) signals are shown in red and green, respectively. The inset shows a magnified view of chromosome 19 into which the transgene has integrated (19*). Scale bars: 2.5 μm; 0.5 μm in inset. (C) PCR assay of genomic DNA using primers that flank the transgene integration site. Product is amplified from Tg/+ DNA and not from +/+ DNA. All genomic DNA samples were shown to be amplifiable using Gapdh primers (data not shown). H2O indicates negative control reaction. (D) Southern blot analysis comparing +/+ and Tg/+ DNA digested with KpnI, PstI, and SpeI. Marker sizes (kb) are shown on the right. Note the additional bands of expected size in each of the Tg/+ tracts. K, KpnI; P, PstI; S, SpeI.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts