Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Genetic ablation of complement C3 attenuates muscle pathology in dysferlin-deficient mice
Renzhi Han, … , John A. Faulkner, Kevin P. Campbell
Renzhi Han, … , John A. Faulkner, Kevin P. Campbell
Published November 8, 2010
Citation Information: J Clin Invest. 2010;120(12):4366-4374. https://doi.org/10.1172/JCI42390.
View: Text | PDF
Research Article Muscle biology

Genetic ablation of complement C3 attenuates muscle pathology in dysferlin-deficient mice

  • Text
  • PDF
Abstract

Mutations in the dysferlin gene underlie a group of autosomal recessive muscle-wasting disorders denoted as dysferlinopathies. Dysferlin has been shown to play roles in muscle membrane repair and muscle regeneration, both of which require vesicle-membrane fusion. However, the mechanism by which muscle becomes dystrophic in these disorders remains poorly understood. Although muscle inflammation is widely recognized in dysferlinopathy and dysferlin is expressed in immune cells, the contribution of the immune system to the pathology of dysferlinopathy remains to be fully explored. Here, we show that the complement system plays an important role in muscle pathology in dysferlinopathy. Dysferlin deficiency led to increased expression of complement factors in muscle, while muscle-specific transgenic expression of dysferlin normalized the expression of complement factors and eliminated the dystrophic phenotype present in dysferlin-null mice. Furthermore, genetic disruption of the central component (C3) of the complement system ameliorated muscle pathology in dysferlin-deficient mice but had no significant beneficial effect in a genetically distinct model of muscular dystrophy, mdx mice. These results demonstrate that complement-mediated muscle injury is central to the pathogenesis of dysferlinopathy and suggest that targeting the complement system might serve as a therapeutic approach for this disease.

Authors

Renzhi Han, Ellie M. Frett, Jennifer R. Levy, Erik P. Rader, John D. Lueck, Dimple Bansal, Steven A. Moore, Rainer Ng, Daniel Beltrán-Valero de Bernabé, John A. Faulkner, Kevin P. Campbell

×

Figure 1

Contractile properties of the dysferlin-deficient EDL muscles and muscle pathophysiology in response to LCs in vivo.

Options: View larger image (or click on image) Download as PowerPoint
Contractile properties of the dysferlin-deficient EDL muscles and muscle...
(A) Representative micrographs of H&E-stained EDL muscle sections from C57BL/6 (WT) and dysferlin-null (Dysf-null) mice at 8 months of age. Scale bar: 100 μm. (B) Muscle-specific force and (C) force deficit after 7 LCs were measured for EDL muscles isolated from WT and dysferlin-null mice (n = 4 for each strain at 2 or 8 months of age). Quantified horizontal activity (D), vertical activity (E), travel distance (F), and the moving time (G) before (white columns) and after (black columns) exercise for 2-month-old WT (n = 5) and dysferlin-null mice (n = 4). *P < 0.05. Data are expressed as mean ± SEM.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts