Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice
José Iglesias, … , Bernard Thorens, Walter Wahli
José Iglesias, … , Bernard Thorens, Walter Wahli
Published October 24, 2012
Citation Information: J Clin Invest. 2012;122(11):4105-4117. https://doi.org/10.1172/JCI42127.
View: Text | PDF
Research Article Metabolism

PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice

  • Text
  • PDF
Abstract

PPARβ/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in muscle, adipose tissue, and liver. However, its function in pancreas remains ill defined. To gain insight into its hypothesized role in β cell function, we specifically deleted Pparb/d in the epithelial compartment of the mouse pancreas. Mutant animals presented increased numbers of islets and, more importantly, enhanced insulin secretion, causing hyperinsulinemia. Gene expression profiling of pancreatic β cells indicated a broad repressive function of PPARβ/δ affecting the vesicular and granular compartment as well as the actin cytoskeleton. Analyses of insulin release from isolated PPARβ/δ-deficient islets revealed an accelerated second phase of glucose-stimulated insulin secretion. These effects in PPARβ/δ-deficient islets correlated with increased filamentous actin (F-actin) disassembly and an elevation in protein kinase D activity that altered Golgi organization. Taken together, these results provide evidence for a repressive role for PPARβ/δ in β cell mass and insulin exocytosis, and shed a new light on PPARβ/δ metabolic action.

Authors

José Iglesias, Sebastian Barg, David Vallois, Shawon Lahiri, Catherine Roger, Akadiri Yessoufou, Sylvain Pradevand, Angela McDonald, Claire Bonal, Frank Reimann, Fiona Gribble, Marie-Bernard Debril, Daniel Metzger, Pierre Chambon, Pedro Herrera, Guy A. Rutter, Marc Prentki, Bernard Thorens, Walter Wahli

×

Figure 3

Effect of Pparb/d deletion on the pancreas of 8-week-old mice.

Options: View larger image (or click on image) Download as PowerPoint
Effect of Pparb/d deletion on the pancreas of 8-week-old mice.
 
(A) β c...
(A) β cell mass quantification (n = 3). *P < 0.05. (B) Islet size distribution derived from pancreas sections used to determine β cell mass (n = 3). *P < 0.05. (C) Quantification of BrdU incorporation in β cells from pancreas section isolated from 2-week-old mice (n = 4–5). **P < 0.01. (D) Pancreatic insulin content at different postnatal stages (n = 6). **P < 0.005. (E) Comparison of Insulin I and Insulin II mRNA expression levels in islets from 8-week-old mice (n = 3). (F) Islet insulin content relative to DNA content (n = 4).

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts