Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice
José Iglesias, … , Bernard Thorens, Walter Wahli
José Iglesias, … , Bernard Thorens, Walter Wahli
Published October 24, 2012
Citation Information: J Clin Invest. 2012;122(11):4105-4117. https://doi.org/10.1172/JCI42127.
View: Text | PDF
Research Article Metabolism

PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice

  • Text
  • PDF
Abstract

PPARβ/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in muscle, adipose tissue, and liver. However, its function in pancreas remains ill defined. To gain insight into its hypothesized role in β cell function, we specifically deleted Pparb/d in the epithelial compartment of the mouse pancreas. Mutant animals presented increased numbers of islets and, more importantly, enhanced insulin secretion, causing hyperinsulinemia. Gene expression profiling of pancreatic β cells indicated a broad repressive function of PPARβ/δ affecting the vesicular and granular compartment as well as the actin cytoskeleton. Analyses of insulin release from isolated PPARβ/δ-deficient islets revealed an accelerated second phase of glucose-stimulated insulin secretion. These effects in PPARβ/δ-deficient islets correlated with increased filamentous actin (F-actin) disassembly and an elevation in protein kinase D activity that altered Golgi organization. Taken together, these results provide evidence for a repressive role for PPARβ/δ in β cell mass and insulin exocytosis, and shed a new light on PPARβ/δ metabolic action.

Authors

José Iglesias, Sebastian Barg, David Vallois, Shawon Lahiri, Catherine Roger, Akadiri Yessoufou, Sylvain Pradevand, Angela McDonald, Claire Bonal, Frank Reimann, Fiona Gribble, Marie-Bernard Debril, Daniel Metzger, Pierre Chambon, Pedro Herrera, Guy A. Rutter, Marc Prentki, Bernard Thorens, Walter Wahli

×

Figure 1

Pparb/d ablation in pancreas.

Options: View larger image (or click on image) Download as PowerPoint

Pparb/d ablation in pancreas.
 
(A) Relative Pparb/d mRNA expression le...
(A) Relative Pparb/d mRNA expression levels in the pancreas at different stages of fetal and postnatal life (n = 4). *P < 0.05; ***P < 10–4. (B) Pparb/d mRNA expression levels in pancreatic α- and β-sorted cells from adult mice by FACS (n = 3). (C) Relative mRNA expression of the 3 PPAR isotypes, a, b/d, and g, in human islets (n = 3). *P < 0.05; ***P < 10–4. (D) Cre activity in E15.5 Pdx1Cre;R26R mice revealed by β-gal activity in the Pdx1 expression domain; dorsal (black arrowhead) and ventral (black arrow) pancreas; spleen (white arrow); duodenum (white arrowhead). (E) PCR analysis of pancreatic DNA. The 490-bp “deleted” band (lanes 3 and 4) in Pdx1Cre;Pparb/dfl/fl mice confirms Pparb/d excision. The 2-kb band is from the WT allele (lane 7) or the nondeleted floxed allele (lanes 1 and 2). Both the WT and excised alleles are detected in Pdx1Cre;Pparb/dfl/+ mice (lanes 5 and 6). nc, negative control; kb, DNA ladder. (F) TaqMan analysis of Pparb/d mRNA levels in WT and mutated islets (n = 3). ***P < 10–4. (G) Detection of PPARβ/δ by immunostaining in cell nuclei of pancreas from E17.5 embryos. In the left panel, a few positive nuclei are indicated by arrowheads as examples. Scale bar: 100 μm.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts