Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain
Meiqing Shi, … , Paul Kubes, Christopher H. Mody
Meiqing Shi, … , Paul Kubes, Christopher H. Mody
Published April 26, 2010
Citation Information: J Clin Invest. 2010;120(5):1683-1693. https://doi.org/10.1172/JCI41963.
View: Text | PDF
Research Article

Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain

  • Text
  • PDF
Abstract

Infectious meningitis and encephalitis is caused by invasion of circulating pathogens into the brain. It is unknown how the circulating pathogens dynamically interact with brain endothelium under shear stress, leading to invasion into the brain. Here, using intravital microscopy, we have shown that Cryptococcus neoformans, a yeast pathogen that causes meningoencephalitis, stops suddenly in mouse brain capillaries of a similar or smaller diameter than the organism, in the same manner and with the same kinetics as polystyrene microspheres, without rolling and tethering to the endothelial surface. Trapping of the yeast pathogen in the mouse brain was not affected by viability or known virulence factors. After stopping in the brain, C. neoformans was seen to cross the capillary wall in real time. In contrast to trapping, viability, but not replication, was essential for the organism to cross the brain microvasculature. Using a knockout strain of C. neoformans, we demonstrated that transmigration into the mouse brain is urease dependent. To determine whether this could be amenable to therapy, we used the urease inhibitor flurofamide. Flurofamide ameliorated infection of the mouse brain by reducing transmigration into the brain. Together, these results suggest that C. neoformans is mechanically trapped in the brain capillary, which may not be amenable to pharmacotherapy, but actively transmigrates to the brain parenchyma with contributions from urease, suggesting that a therapeutic strategy aimed at inhibiting this enzyme could help prevent meningitis and encephalitis caused by C. neoformans infection.

Authors

Meiqing Shi, Shu Shun Li, Chunfu Zheng, Gareth J. Jones, Kwang Sik Kim, Hong Zhou, Paul Kubes, Christopher H. Mody

×

Figure 8

Flurofamide ameliorates brain infection.

Options: View larger image (or click on image) Download as PowerPoint
Flurofamide ameliorates brain infection.
(A) Survival of the mice treate...
(A) Survival of the mice treated with flurofamide and receiving 20 × 106 flurofamide-treated C. neoformans strain H99 compared with DMSO treatment, which served as a control. (B) Brain CFU of mice treated with flurofamide and receiving 20 × 106 flurofamide-treated C. neoformans strain H99 compared with DMSO treatment. (C) Percentage of colonies within the parenchyma of the brain as a percentage of the total colonies at 72 hours in mice treated with flurofamide and receiving 20 × 106 flurofamide-treated C. neoformans strain H99. Data are presented as mean ± SEM (n = 4). Data are representative of 2 or 3 independent experiments. *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts