Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice
Sara Gardenghi, … , Robert W. Grady, Stefano Rivella
Sara Gardenghi, … , Robert W. Grady, Stefano Rivella
Published November 22, 2010
Citation Information: J Clin Invest. 2010;120(12):4466-4477. https://doi.org/10.1172/JCI41717.
View: Text | PDF
Research Article

Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice

  • Text
  • PDF
Abstract

Excessive iron absorption is one of the main features of β-thalassemia and can lead to severe morbidity and mortality. Serial analyses of β-thalassemic mice indicate that while hemoglobin levels decrease over time, the concentration of iron in the liver, spleen, and kidneys markedly increases. Iron overload is associated with low levels of hepcidin, a peptide that regulates iron metabolism by triggering degradation of ferroportin, an iron-transport protein localized on absorptive enterocytes as well as hepatocytes and macrophages. Patients with β-thalassemia also have low hepcidin levels. These observations led us to hypothesize that more iron is absorbed in β-thalassemia than is required for erythropoiesis and that increasing the concentration of hepcidin in the body of such patients might be therapeutic, limiting iron overload. Here we demonstrate that a moderate increase in expression of hepcidin in β-thalassemic mice limits iron overload, decreases formation of insoluble membrane-bound globins and reactive oxygen species, and improves anemia. Mice with increased hepcidin expression also demonstrated an increase in the lifespan of their red cells, reversal of ineffective erythropoiesis and splenomegaly, and an increase in total hemoglobin levels. These data led us to suggest that therapeutics that could increase hepcidin levels or act as hepcidin agonists might help treat the abnormal iron absorption in individuals with β-thalassemia and related disorders.

Authors

Sara Gardenghi, Pedro Ramos, Maria Franca Marongiu, Luca Melchiori, Laura Breda, Ella Guy, Kristen Muirhead, Niva Rao, Cindy N. Roy, Nancy C. Andrews, Elizabeta Nemeth, Antonia Follenzi, Xiuli An, Narla Mohandas, Yelena Ginzburg, Eliezer A. Rachmilewitz, Patricia J. Giardina, Robert W. Grady, Stefano Rivella

×

Figure 2

Effects of dietary iron on the size of the spleen (normalized to body weight) and the percentage of mature and immature erythroid cell populations in the spleens of WT and th3/+ mice.

Options: View larger image (or click on image) Download as PowerPoint
Effects of dietary iron on the size of the spleen (normalized to body we...
(A) FACS analysis performed on splenic erythroid cells using CD71 (Tf receptor) and Ter119 (erythroid-specific) costaining. The graphs indicate the percentages of early erythroid precursors (CD71+Ter119+), which correspond mainly to basophilic erythroblasts and late basophilic and chromatophilic erythroblasts, and those of mature erythroid cells (CD71–Ter119+), including both enucleated erythroid cells and orthochromatic erythroblasts. (B) FACS analysis of spleen cells from 2 representative th3/+ mice fed the 35-ppm (left panel) and 2.5-ppm (right panel) diets. (C) Number of CD71+Ter119+ and CD71–Ter119+ cells in the spleen. (D) Spleen weights normalized to body weight. Groups of mice on the 2.5-ppm diet were compared with the corresponding groups on the 35-ppm diet fed for the same length of time. *P < 0.05; **P < 0.01; ***P < 0.001. Data are presented as mean ± SD.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts