Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy
Marco A. Passini, … , Lamya S. Shihabuddin, Seng H. Cheng
Marco A. Passini, … , Lamya S. Shihabuddin, Seng H. Cheng
Published March 15, 2010
Citation Information: J Clin Invest. 2010;120(4):1253-1264. https://doi.org/10.1172/JCI41615.
View: Text | PDF
Research Article Neuroscience

CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy

  • Text
  • PDF
Abstract

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by a deficiency of survival motor neuron (SMN) due to mutations in the SMN1 gene. In this study, an adeno-associated virus (AAV) vector expressing human SMN (AAV8-hSMN) was injected at birth into the CNS of mice modeling SMA. Western blot analysis showed that these injections resulted in widespread expression of SMN throughout the spinal cord, and this translated into robust improvement in skeletal muscle physiology, including increased myofiber size and improved neuromuscular junction architecture. Treated mice also displayed substantial improvements on behavioral tests of muscle strength, coordination, and locomotion, indicating that the neuromuscular junction was functional. Treatment with AAV8-hSMN increased the median life span of mice with SMA-like disease to 50 days compared with 15 days for untreated controls. Moreover, injecting mice with SMA-like disease with a human SMN–expressing self-complementary AAV vector — a vector that leads to earlier onset of gene expression compared with standard AAV vectors — led to improved efficacy of gene therapy, including a substantial extension in median survival to 157 days. These data indicate that CNS-directed, AAV-mediated SMN augmentation is highly efficacious in addressing both neuronal and muscular pathologies in a severe mouse model of SMA.

Authors

Marco A. Passini, Jie Bu, Eric M. Roskelley, Amy M. Richards, S. Pablo Sardi, Catherine R. O’Riordan, Katherine W. Klinger, Lamya S. Shihabuddin, Seng H. Cheng

×

Figure 7

Comparison of AAV vector tropism in the lumbar spinal cord.

Options: View larger image (or click on image) Download as PowerPoint
Comparison of AAV vector tropism in the lumbar spinal cord.
Human SMN im...
Human SMN immunostaining was performed on frozen tissue sections from untreated SMA (A and D), AAV8-hSMN–treated SMA (B, D, and F), and scAAV8-hSMN–treated SMA (C–E, and G) mice at 16 days (A–D, F, and G) and 157 days (E) after injection. A diffuse hSMN immunostaining pattern consistent with glial cell morphology was observed at 16 days with AAV8-hSMN (B and D). Doubling immunolabeling (yellow) of hSMN (red) and mGFAP (green) confirmed that a subset of the AAV8-hSMN–transduced cells were astrocytes (D). In contrast, scAAV8 treatment resulted in hSMN expression only in distinct cell bodies with neuronal morphology (C), which did not colocalize with GFAP (D). Double immunolabeling (yellow) of hSMN (red) and the motor neuron marker mChAT (green) confirmed that a subset of cells transduced by scAAV8-hSMN (E and G) and AAV8-hSMN (F) were motor neurons. hSMN expression (red) was also observed in the interneuronal cell layers of the spinal cord with both viral vectors, as exemplified by scAAV8-hSMN at 157 days (E). Scale bars: 100 microns (A–C); 200 microns (D and E).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts