Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy
Marco A. Passini, … , Lamya S. Shihabuddin, Seng H. Cheng
Marco A. Passini, … , Lamya S. Shihabuddin, Seng H. Cheng
Published March 15, 2010
Citation Information: J Clin Invest. 2010;120(4):1253-1264. https://doi.org/10.1172/JCI41615.
View: Text | PDF
Research Article Neuroscience

CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy

  • Text
  • PDF
Abstract

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by a deficiency of survival motor neuron (SMN) due to mutations in the SMN1 gene. In this study, an adeno-associated virus (AAV) vector expressing human SMN (AAV8-hSMN) was injected at birth into the CNS of mice modeling SMA. Western blot analysis showed that these injections resulted in widespread expression of SMN throughout the spinal cord, and this translated into robust improvement in skeletal muscle physiology, including increased myofiber size and improved neuromuscular junction architecture. Treated mice also displayed substantial improvements on behavioral tests of muscle strength, coordination, and locomotion, indicating that the neuromuscular junction was functional. Treatment with AAV8-hSMN increased the median life span of mice with SMA-like disease to 50 days compared with 15 days for untreated controls. Moreover, injecting mice with SMA-like disease with a human SMN–expressing self-complementary AAV vector — a vector that leads to earlier onset of gene expression compared with standard AAV vectors — led to improved efficacy of gene therapy, including a substantial extension in median survival to 157 days. These data indicate that CNS-directed, AAV-mediated SMN augmentation is highly efficacious in addressing both neuronal and muscular pathologies in a severe mouse model of SMA.

Authors

Marco A. Passini, Jie Bu, Eric M. Roskelley, Amy M. Richards, S. Pablo Sardi, Catherine R. O’Riordan, Katherine W. Klinger, Lamya S. Shihabuddin, Seng H. Cheng

×

Figure 6

Gene therapy increased longevity of SMA mice.

Options: View larger image (or click on image) Download as PowerPoint
Gene therapy increased longevity of SMA mice.
Untreated SMA mice (n = 34...
Untreated SMA mice (n = 34, open circles) had a median survival of 15 days (A). SMA mice treated at P0 with either saline (n = 14, open triangles) or AAV8-null (n = 10, open square) had median survivals of 15 and 17 days, respectively (P > 0.05). SMA mice treated at P0 with AAV8-hSMN (n = 24, closed circles) had a median survival of 50 days (P < 0.0001), which was a 233% increase in longevity compared with untreated SMA mice (A). The survival curve revealed 2 groups of AAV8-hSMN–treated SMA mice, a first group that was found dead by 27 days and a second group that was sacrificed at 58–66 days (A). Treatment with scAAV8-hSMN showed an even greater increase in survival (B). SMA mice treated at P0 with scAAV8-hSMN (n = 17, closed triangles) had a median life span of 157 days (P < 0.0001) compared with 16 days in untreated SMA mice (n = 47, open circles) (B). As a reference, the survival plots of the SMA mice treated with AAV8-hSMN, AAV8-null, and saline were also included (B).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts