Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy
Marco A. Passini, … , Lamya S. Shihabuddin, Seng H. Cheng
Marco A. Passini, … , Lamya S. Shihabuddin, Seng H. Cheng
Published March 15, 2010
Citation Information: J Clin Invest. 2010;120(4):1253-1264. https://doi.org/10.1172/JCI41615.
View: Text | PDF
Research Article Neuroscience

CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy

  • Text
  • PDF
Abstract

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by a deficiency of survival motor neuron (SMN) due to mutations in the SMN1 gene. In this study, an adeno-associated virus (AAV) vector expressing human SMN (AAV8-hSMN) was injected at birth into the CNS of mice modeling SMA. Western blot analysis showed that these injections resulted in widespread expression of SMN throughout the spinal cord, and this translated into robust improvement in skeletal muscle physiology, including increased myofiber size and improved neuromuscular junction architecture. Treated mice also displayed substantial improvements on behavioral tests of muscle strength, coordination, and locomotion, indicating that the neuromuscular junction was functional. Treatment with AAV8-hSMN increased the median life span of mice with SMA-like disease to 50 days compared with 15 days for untreated controls. Moreover, injecting mice with SMA-like disease with a human SMN–expressing self-complementary AAV vector — a vector that leads to earlier onset of gene expression compared with standard AAV vectors — led to improved efficacy of gene therapy, including a substantial extension in median survival to 157 days. These data indicate that CNS-directed, AAV-mediated SMN augmentation is highly efficacious in addressing both neuronal and muscular pathologies in a severe mouse model of SMA.

Authors

Marco A. Passini, Jie Bu, Eric M. Roskelley, Amy M. Richards, S. Pablo Sardi, Catherine R. O’Riordan, Katherine W. Klinger, Lamya S. Shihabuddin, Seng H. Cheng

×

Figure 2

Human SMN is expressed in the proper intracellular compartments and in motor neurons with AAV8-hSMN treatment.

Options: View larger image (or click on image) Download as PowerPoint
Human SMN is expressed in the proper intracellular compartments and in m...
In situ hybridization (A and B) and immunohistochemistry (C–K) of the lumbar segment in AAV8-hSMN–treated (A, C, E–K) and untreated (B and D) SMA mice at 16 days (A–D) and 58–66 days (E–K) after injection. The low level of endogenous hSMN in untreated SMA mice was below the threshold of detection using these assays (B and D). Vector-derived hSMN was abundantly detected in the cytoplasm and in the nucleus of transduced cells, as illustrated by the pair of gem-like structures in the nucleus (E, the arrowhead points to the hSMN immunosignal magnified in the inset). hSMN was also detected in the dendrites (F and G) and in the axons (H) of neurons. The colocalization of hSMN (I) with mChAT (J) showed that a subset of transduced cells consisted of motor neurons (K). Shown are the average numbers of ChAT immunopositive cell counts from the lumbar, thoracic, and cervical segments at both time points (L). SMA (n = 8 at 16 days); AAV (n = 8 at 16 days, n = 5 at 58–66 days); WT, untreated WT (n = 8 at 16 days, n = 5 at 58–66 days). Values represent the mean ± SEM. Scale bars: 500 microns (A–D); 10 microns (E and H); 50 microns (F); 12 microns (G), 100 microns (I–K). Statistical comparisons were performed with 1-way ANOVA and Bonferroni’s multiple post hoc tests at 16 days and with unpaired 2-tailed Student’s t tests at 58–66 days (L). *P < 0.05; **P < 0.01.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts