Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The diabetogenic mouse MHC class II molecule I-Ag7 is endowed with a switch that modulates TCR affinity
Kenji Yoshida, … , Ian A. Wilson, Luc Teyton
Kenji Yoshida, … , Ian A. Wilson, Luc Teyton
Published April 19, 2010
Citation Information: J Clin Invest. 2010;120(5):1578-1590. https://doi.org/10.1172/JCI41502.
View: Text | PDF
Research Article

The diabetogenic mouse MHC class II molecule I-Ag7 is endowed with a switch that modulates TCR affinity

  • Text
  • PDF
Abstract

Genetic susceptibility to autoimmunity is frequently associated with specific MHC alleles. Diabetogenic MHC class II molecules, such as human HLA-DQ8 and mouse I-Ag7, typically have a small, uncharged amino acid residue at position 57 of their β chain (β57); this results in the absence of a salt bridge between β57 and Argα76, which is adjacent to the P9 pocket of the peptide-binding groove. However, the influence of Argα76 on the selection of the TCR repertoire remains unknown, particularly when the MHC molecule binds a peptide with a neutral amino acid residue at position P9. Here, we have shown that diabetogenic MHC class II molecules bound to a peptide with a neutral P9 residue primarily selected and expanded cells expressing TCRs bearing a negatively charged residue in the first segment of their complementarity determining region 3β. The crystal structure of one such TCR in complex with I-Ag7 bound to a peptide containing a neutral P9 residue revealed that a network of favorable long-range (greater than 4 Å) electrostatic interactions existed among Argα76, the neutral P9 residue, and TCR, which supported the substantially increased TCR/peptide-MHC affinity. This network could be modulated or switched to a lower affinity interaction by the introduction of a negative charge at position P9 of the peptide. Our results support the existence of a switch at residue β57 of the I-Ag7 and HLA-DQ8 class II molecules and potentially link normal thymic TCR selection with abnormal peripheral behavior.

Authors

Kenji Yoshida, Adam L. Corper, Rana Herro, Bana Jabri, Ian A. Wilson, Luc Teyton

×

Figure 2

Analysis of the I-Ag7GAD221–235 structure.

Options: View larger image (or click on image) Download as PowerPoint
Analysis of the I-Ag7GAD221–235 structure.
   
(A) A nonphysiological I-...
(A) A nonphysiological I-Ag7GAD221–235 dimer observed in the crystal. The principal interface contact is formed when the glutamate side chain (E∝171) of 1 MHC molecule binds in the P9 pocket of a second I-Ag7 molecule in the crystal lattice. View is centered on the P9 pocket of I-Ag7 (ribbon trace in cyan). The GAD peptide is displayed in ball-and-stick and appears as maroon. A symmetry-related I-Ag7 is displayed as a ribbon trace in yellow. The GAD P9 peptide residue (Gly) is highlighted by an asterisk. (B) Electrostatic surfaces of I-Ag7GAD221–235 (left) and I-Ag7GAD221–2359E (right). The GAD221–235 molecular surface is more positively charged around the P9 region (highlighted by an asterisk) compared with GAD221–2359E. Positive charge is contoured blue, while negative charge is red (–5 to +5 kT/e). View is looking down onto the pMHC surface, with the P9 peptide residue circled.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts