Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
p120-catenin is essential for maintenance of barrier function and intestinal homeostasis in mice
Whitney G. Smalley-Freed, Andrey Efimov, Patrick E. Burnett, Sarah P. Short, Michael A. Davis, Deborah L. Gumucio, M. Kay Washington, Robert J. Coffey, Albert B. Reynolds
Whitney G. Smalley-Freed, Andrey Efimov, Patrick E. Burnett, Sarah P. Short, Michael A. Davis, Deborah L. Gumucio, M. Kay Washington, Robert J. Coffey, Albert B. Reynolds
View: Text | PDF
Research Article Gastroenterology

p120-catenin is essential for maintenance of barrier function and intestinal homeostasis in mice

  • Text
  • PDF
Abstract

Epithelial-cadherin (E-cadherin) is a master organizer of the epithelial phenotype. Its function is regulated in part by p120-catenin (referred to herein as p120), a cytoplasmic binding partner that directly regulates cadherin stability. As it has been suggested that cadherins have a role in inflammatory bowel disease (IBD), we sought to investigate this further by assessing the effect of p120 deficiency in mouse small intestine and colon. p120 conditional KO mice were superficially normal at birth but declined rapidly and died within 21 days. Cell-cell adhesion defects and inflammation led to progressive mucosal erosion and terminal bleeding, similar to what is observed in a dominant-negative cadherin mouse model of IBD. Additionally, selective loss of adherens junctions and accumulation of atypical COX-2–expressing neutrophils in p120-null areas of the colon were observed. To elucidate the mechanism, direct effects of p120 deficiency were assessed in vitro in a polarizing colon cancer cell line. Notably, transepithelial electrical resistance was dramatically reduced, neutrophil binding was increased 30 fold, and levels of COX-2, an enzyme associated with IBD, were markedly increased in neutrophils. Our data suggest that p120 loss disrupts the neonatal intestinal barrier and amplifies neutrophil engagement and that these changes lead to catastrophic inflammation during colonization of the neonatal gut with bacteria and other luminal antigens. Thus, we conclude that p120 has an essential role in barrier function and epithelial homeostasis and survival in the intestine.

Authors

Whitney G. Smalley-Freed, Andrey Efimov, Patrick E. Burnett, Sarah P. Short, Michael A. Davis, Deborah L. Gumucio, M. Kay Washington, Robert J. Coffey, Albert B. Reynolds

×

Figure 2

Rapid deterioration of gut morphology.

Options: View larger image (or click on image) Download as PowerPoint
Rapid deterioration of gut morphology.
Sections of small intestine or co...
Sections of small intestine or colon from p120 KO or control mice were analyzed by H&E staining. (A) Sections of small intestine from day 5, 10, and 16 p120 KO mice. Note the rapid deterioration in villus morphology and cell-cell adhesion. Original magnification, ×20. (B) Sections of control and p120 KO small intestines at day 16. Note the morphologic defects, compromised cell-cell adhesion, and erosion of cells from the tips of villi (bottom right panel), which led to bleeding. (C) Sections of control and p120 KO colons at day 16. p120 KO causes a doubling of mucosal height (compare the images at a magnification of ×40) and mucosal erosion (top right panel). Original magnification, ×20 (B and C, top rows); ×40 (B and C, bottom rows).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts