Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice
Michio Tomura, … , Osami Kanagawa, Kenji Kabashima
Michio Tomura, … , Osami Kanagawa, Kenji Kabashima
Published February 22, 2010
Citation Information: J Clin Invest. 2010;120(3):883-893. https://doi.org/10.1172/JCI40926.
View: Text | PDF
Research Article

Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice

  • Text
  • PDF
Abstract

Tregs play an important role in protecting the skin from autoimmune attack. However, the extent of Treg trafficking between the skin and draining lymph nodes (DLNs) is unknown. We set out to investigate this using mice engineered to express the photoconvertible fluorescence protein Kaede, which changes from green to red when exposed to violet light. By exposing the skin of Kaede-transgenic mice to violet light, we were able to label T cells in the periphery under physiological conditions with Kaede-red and demonstrated that both memory phenotype CD4+Foxp3– non-Tregs and CD4+Foxp3+ Tregs migrated from the skin to DLNs in the steady state. During cutaneous immune responses, Tregs constituted the major emigrants and inhibited immune responses more robustly than did LN-resident Tregs. We consistently observed that cutaneous immune responses were prolonged by depletion of endogenous Tregs in vivo. In addition, the circulating Tregs specifically included activated CD25hi Tregs that demonstrated a strong inhibitory function. Together, our results suggest that Tregs in circulation infiltrate the periphery, traffic to DLNs, and then recirculate back to the skin, contributing to the downregulation of cutaneous immune responses.

Authors

Michio Tomura, Tetsuya Honda, Hideaki Tanizaki, Atsushi Otsuka, Gyohei Egawa, Yoshiki Tokura, Herman Waldmann, Shohei Hori, Jason G. Cyster, Takeshi Watanabe, Yoshiki Miyachi, Osami Kanagawa, Kenji Kabashima

×

Figure 7

Kinetics and suppression activity of CD25hi Kaede-red migratory Tregs.

Options: View larger image (or click on image) Download as PowerPoint
Kinetics and suppression activity of CD25hi Kaede-red migratory Tregs.
 ...
(A–C) Characterization of CD25hi subset. Kaede/Foxp3hCD2/hCD52 mice were treated as in Figure 3A, and the expression levels of hCD2/Foxp3 and CD25 on CD4+hCD2/Foxp3+ Tregs in total, Kaede-red, and Kaede-green DLN cells and in non-DLN cells (A), the frequency of Kaede-red populations in each population (B), and the expression levels of surface markers on Kaede-red or Kaede-green Tregs in the DLNs (C) were analyzed. (D) Kinetics of T cell migration. Kaede/Foxp3hCD2/hCD52 mice were sensitized and challenged as in Figure 3A and photoconverted immediately (day 0), 1 (day 1), 2 (day 2), or 3 (day 3) days after challenge. The number of each subset migrating for 24 hours after photoconversion and the frequency of Kaede-red cells among each subset were measured. (E) Foxp3hCD2/hCD52 mice were sensitized with DNFB (S+) and challenged with DNFB (C+) or vehicle (C–). Skin suspensions were evaluated for the expression of hCD2/Foxp3 and CD25. (F) Skin DLNs cells of sensitized B6 mice were stimulated in the absence or presence of Kaede-red total hCD2+ Tregs (25hi/int), CD25hi Tregs (25hi), or CD25int Tregs (25int). (G) mRNAs for Il10 (IL-10), Tgfb1 (TGF-β), and Ctla4 (CTLA-4) of Kaede-green CD25int or CD25hi Tregs, Kaede-red CD25int or CD25hi Tregs, or Kaede-green CD25int Tregs in DLNs (D) or non-DLNs (N) were evaluated. The expression level in Kaede-green CD25int Tregs was normalized to 1. Data are presented as means ± SD (n = 3) (D, F, and G). *P < 0.05 between indicated groups. (F and G). Numbers within plots or histograms indicate percentage of cells (A, B, and E).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts