Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice
Michio Tomura, … , Osami Kanagawa, Kenji Kabashima
Michio Tomura, … , Osami Kanagawa, Kenji Kabashima
Published February 22, 2010
Citation Information: J Clin Invest. 2010;120(3):883-893. https://doi.org/10.1172/JCI40926.
View: Text | PDF
Research Article

Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice

  • Text
  • PDF
Abstract

Tregs play an important role in protecting the skin from autoimmune attack. However, the extent of Treg trafficking between the skin and draining lymph nodes (DLNs) is unknown. We set out to investigate this using mice engineered to express the photoconvertible fluorescence protein Kaede, which changes from green to red when exposed to violet light. By exposing the skin of Kaede-transgenic mice to violet light, we were able to label T cells in the periphery under physiological conditions with Kaede-red and demonstrated that both memory phenotype CD4+Foxp3– non-Tregs and CD4+Foxp3+ Tregs migrated from the skin to DLNs in the steady state. During cutaneous immune responses, Tregs constituted the major emigrants and inhibited immune responses more robustly than did LN-resident Tregs. We consistently observed that cutaneous immune responses were prolonged by depletion of endogenous Tregs in vivo. In addition, the circulating Tregs specifically included activated CD25hi Tregs that demonstrated a strong inhibitory function. Together, our results suggest that Tregs in circulation infiltrate the periphery, traffic to DLNs, and then recirculate back to the skin, contributing to the downregulation of cutaneous immune responses.

Authors

Michio Tomura, Tetsuya Honda, Hideaki Tanizaki, Atsushi Otsuka, Gyohei Egawa, Yoshiki Tokura, Herman Waldmann, Shohei Hori, Jason G. Cyster, Takeshi Watanabe, Yoshiki Miyachi, Osami Kanagawa, Kenji Kabashima

×

Figure 3

Cell migration from the skin to DLN during a cutaneous immune response.

Options: View larger image (or click on image) Download as PowerPoint
Cell migration from the skin to DLN during a cutaneous immune response.
...
(A) Scheme of the experimental protocol is as follows: the dorsal skin of Kaede/Foxp3hCD2/hCD52 was sensitized, and 5 days thereafter the abdominal skin was challenged. 2 days after challenge, the painted areas were photoconverted, and 24 hours after photoconversion, cells from the skin DLNs were analyzed by flow cytometry. (B and C) The frequency of Kaede-red and Kaede-green cells among CD4+ cells, and the frequencies of hCD2/Foxp3+ cells in total, Kaede-green, and Kaede-red cells among CD4+ cells were analyzed. Numbers within plots or histograms indicate percentage of cells in the respective areas. (D) The numbers of CD44mid naive (M), CD44hi memory (H), and naive plus memory (H/M) phenotypes of hCD2–CD4+ non-Tregs (–), hCD2+CD4+ Tregs (+), and total (hCD2– and hCD2+; +/–) CD4+ T cells among total CD4+ cells and Kaede-red cells in the DLNs were counted. (E) Number of Tregs and non-Tregs in the skin. The mice were painted with DNFB or vehicle on the abdomen, followed by DNFB or vehicle application on the ears. The number of CD4+ Tregs and CD4+ non-Tregs and the percentage ratio of Tregs among CD4+ T cells in the ears were measured. (F) Transwell assay. The number of hCD2+CD4+ cells and CD11c+ cells of skin-cell suspensions from Foxp3hCD2/hCD52 mice that migrated to the lower chamber was analyzed. Data are presented as means ± SD (D–F) and are representative of 3 independent experiments. Student’s t test was performed between the indicated groups. *P < 0.05 (D–F).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts