Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice
John S. Cho, … , Robert L. Modlin, Lloyd S. Miller
John S. Cho, … , Robert L. Modlin, Lloyd S. Miller
Published April 1, 2010
Citation Information: J Clin Invest. 2010;120(5):1762-1773. https://doi.org/10.1172/JCI40891.
View: Text | PDF
Research Article Dermatology

IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice

  • Text
  • PDF
Abstract

Staphylococcus aureus is the most common cause of skin and soft tissue infections, and rapidly emerging antibiotic-resistant strains are creating a serious public health concern. If immune-based therapies are to be an alternative to antibiotics, greater understanding is needed of the protective immune response against S. aureus infection in the skin. Although neutrophil recruitment is required for immunity against S. aureus, a role for T cells has been suggested. Here, we used a mouse model of S. aureus cutaneous infection to investigate the contribution of T cells to host defense. We found that mice deficient in γδ but not αβ T cells had substantially larger skin lesions with higher bacterial counts and impaired neutrophil recruitment compared with WT mice. This neutrophil recruitment was dependent upon epidermal Vγ5+ γδ T cell production of IL-17, but not IL-21 and IL-22. Furthermore, IL-17 induction required IL-1, TLR2, and IL-23 and was critical for host defense, since IL-17R–deficient mice had a phenotype similar to that of γδ T cell–deficient mice. Importantly, γδ T cell–deficient mice inoculated with S. aureus and treated with a single dose of recombinant IL-17 had lesion sizes and bacterial counts resembling those of WT mice, demonstrating that IL-17 could restore the impaired immunity in these mice. Our study defines what we believe to be a novel role for IL-17–producing epidermal γδ T cells in innate immunity against S. aureus cutaneous infection.

Authors

John S. Cho, Eric M. Pietras, Nairy C. Garcia, Romela Irene Ramos, David M. Farzam, Holly R. Monroe, Julie E. Magorien, Andrew Blauvelt, Jay K. Kolls, Ambrose L. Cheung, Genhong Cheng, Robert L. Modlin, Lloyd S. Miller

×

Figure 1

γδ but not αβ T cell–deficient mice develop markedly larger skin lesions compared with WT mice in response to cutaneous challenge with S. aureus.

Options: View larger image (or click on image) Download as PowerPoint
γδ but not αβ T cell–deficient mice develop markedly larger skin lesions...
γδ T cell–deficient, αβ T cell–deficient, and WT mice were inoculated intradermally with S. aureus SH1000 strain. (A) Mean total lesion size (cm2) ± SEM. (B) Representative lesions for each mouse strain. Shown are entire dorsal backs (top, mm ruler shown for scale) and close-ups of lesions (bottom). (C) Mean total flux (photons/s) ± SEM. (D) Representative in vivo bioluminescence. Data are from 2 experiments with at least 6 mice/group per experiment. *P < 0.05, †P < 0.01, ‡P < 0.001, γδ T cell–deficient versus WT (Student’s t test).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts