Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis
Anil K. Sood, … , Steven W. Cole, Susan K. Lutgendorf
Anil K. Sood, … , Steven W. Cole, Susan K. Lutgendorf
Published April 12, 2010
Citation Information: J Clin Invest. 2010;120(5):1515-1523. https://doi.org/10.1172/JCI40802.
View: Text | PDF
Research Article Oncology

Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis

  • Text
  • PDF
Abstract

Chronic stress is associated with hormonal changes that are known to affect multiple systems, including the immune and endocrine systems, but the effects of stress on cancer growth and progression are not fully understood. Here, we demonstrate that human ovarian cancer cells exposed to either norepinephrine or epinephrine exhibit lower levels of anoikis, the process by which cells enter apoptosis when separated from ECM and neighboring cells. In an orthotopic mouse model of human ovarian cancer, restraint stress and the associated increases in norepinephrine and epinephrine protected the tumor cells from anoikis and promoted their growth by activating focal adhesion kinase (FAK). These effects involved phosphorylation of FAKY397, which was itself associated with actin-dependent Src interaction with membrane-associated FAK. Importantly, in human ovarian cancer patients, behavioral states related to greater adrenergic activity were associated with higher levels of pFAKY397, which was in turn linked to substantially accelerated mortality. These data suggest that FAK modulation by stress hormones, especially norepinephrine and epinephrine, can contribute to tumor progression in patients with ovarian cancer and may point to potential new therapeutic targets for cancer management.

Authors

Anil K. Sood, Guillermo N. Armaiz-Pena, Jyotsnabaran Halder, Alpa M. Nick, Rebecca L. Stone, Wei Hu, Amy R. Carroll, Whitney A. Spannuth, Michael T. Deavers, Julie K. Allen, Liz Y. Han, Aparna A. Kamat, Mian M.K. Shahzad, Bradley W. McIntyre, Claudia M. Diaz-Montero, Nicholas B. Jennings, Yvonne G. Lin, William M. Merritt, Koen DeGeest, Pablo E. Vivas-Mejia, Gabriel Lopez-Berestein, Michael D. Schaller, Steven W. Cole, Susan K. Lutgendorf

×

Figure 5

Effect of (A) chronic stress or (B) isoproterenol on tumor cell apoptosis in ascites as a reflection of in vivo anoikis using the 2774 model.

Options: View larger image (or click on image) Download as PowerPoint
Effect of (A) chronic stress or (B) isoproterenol on tumor cell apoptosi...
Effects of control siRNA-DOPC or FAK siRNA-DOPC on stress-induced in vivo (C) SKOV3ip1 or (D) HeyA8 tumor growth. (E) Effect of stress on tumor cell apoptosis in the SKOV3ip1 model. (F) Effect of propranolol or FAK siRNA-DOPC on tumor cell apoptosis in ascites as a measure of anoikis using the 2774 model. Results represent the mean ± SEM; n = 10 mice per group. *P < 0.01.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts