Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Golgi and sarcolemmal neuronal NOS differentially regulate contraction-induced fatigue and vasoconstriction in exercising mouse skeletal muscle
Justin M. Percival, … , Marvin E. Adams, Stanley C. Froehner
Justin M. Percival, … , Marvin E. Adams, Stanley C. Froehner
Published February 1, 2010
Citation Information: J Clin Invest. 2010;120(3):816-826. https://doi.org/10.1172/JCI40736.
View: Text | PDF
Research Article Muscle biology

Golgi and sarcolemmal neuronal NOS differentially regulate contraction-induced fatigue and vasoconstriction in exercising mouse skeletal muscle

  • Text
  • PDF
Abstract

Signaling via the neuronal NOS (nNOS) splice variant nNOSμ is essential for skeletal muscle health and is commonly reduced in neuromuscular disease. nNOSμ is thought to be the predominant source of NO in skeletal muscle. Here we demonstrate the existence of what we believe to be a novel signaling pathway, mediated by the nNOS splice variant nNOSβ, localized at the Golgi complex in mouse skeletal muscle cells. In contrast to muscles lacking nNOSμ alone, muscles missing both nNOSμ and nNOSβ were severely myopathic, exhibiting structural defects in the microtubule cytoskeleton, Golgi complex, and mitochondria. Skeletal muscles lacking both nNOSμ and nNOSβ were smaller in mass, intrinsically weak, highly susceptible to fatigue, and exhibited marked postexercise weakness. Our data indicate that nNOSβ is a critical regulator of the structural and functional integrity of skeletal muscle and demonstrate the existence of 2 functionally distinct nNOS microdomains in skeletal muscle, created by the differential targeting of nNOSμ to the sarcolemma and nNOSβ to the Golgi. We have previously shown that sarcolemmal nNOSμ matches the blood supply to the metabolic demands of active muscle. We now demonstrate that nNOSβ simultaneously modulates the ability of skeletal muscle to maintain force production during and after exercise. We conclude therefore that nNOS splice variants are critical regulators of skeletal muscle exercise performance.

Authors

Justin M. Percival, Kendra N.E. Anderson, Paul Huang, Marvin E. Adams, Stanley C. Froehner

×

Figure 1

nNOS is localized to the Golgi complex in fast- and slow-twitch skeletal muscle fibers.

Options: View larger image (or click on image) Download as PowerPoint
nNOS is localized to the Golgi complex in fast- and slow-twitch skeletal...
(A) Golgi complex distribution in fast-twitch gastrocnemius skeletal muscle cells (left panel). The Golgi complex (green) is immunolabeled with a FITC-conjugated GM130 antibody, a marker of cis-Golgi membranes. Myonuclei are counterstained with DAPI (red). A phase contrast image of the fiber is shown in the right panel. (B) nNOS (red) localizes to the Golgi (green) in gastrocnemius myofibers. Surface myonuclei (blue) are labeled with DAPI. The high degree of colocalization is evident in the inset image (yellow) of the overlay panel. (C) nNOS also localizes to the Golgi complex in slow-twitch myofibers of soleus muscle. Higher-magnification images are shown in the inset panels. Scale bar: 20 μm; 6 μm (insets). n ≥ 6.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts