Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Connexins protect mouse pancreatic β cells against apoptosis
Philippe Klee, … , Jacques-Antoine Haefliger, Paolo Meda
Philippe Klee, … , Jacques-Antoine Haefliger, Paolo Meda
Published November 7, 2011
Citation Information: J Clin Invest. 2011;121(12):4870-4879. https://doi.org/10.1172/JCI40509.
View: Text | PDF
Research Article Metabolism

Connexins protect mouse pancreatic β cells against apoptosis

  • Text
  • PDF
Abstract

Type 1 diabetes develops when most insulin-producing β cells of the pancreas are killed by an autoimmune attack. The in vivo conditions modulating the sensitivity and resistance of β cells to this attack remain largely obscure. Here, we show that connexin 36 (Cx36), a trans-membrane protein that forms gap junctions between β cells in the pancreatic islets, protects mouse β cells against both cytotoxic drugs and cytokines that prevail in the islet environment at the onset of type 1 diabetes. We documented that this protection was at least partially dependent on intercellular communication, which Cx36 and other types of connexin channels establish within pancreatic islets. We further found that proinflammatory cytokines decreased expression of Cx36 and that experimental reduction or augmentation of Cx36 levels increased or decreased β cell apoptosis, respectively. Thus, we conclude that Cx36 is central to β cell protection from toxic insults.

Authors

Philippe Klee, Florent Allagnat, Helena Pontes, Manon Cederroth, Anne Charollais, Dorothée Caille, Aurore Britan, Jacques-Antoine Haefliger, Paolo Meda

×

Figure 6

Increased junctional coupling in islets resistant to β cell–toxic conditions.

Options: View larger image (or click on image) Download as PowerPoint
Increased junctional coupling in islets resistant to β cell–toxic condit...
(A–E) Microinjection of islets with LY showed limited β cell coupling in islets of Cx36+/+ and RIP-Cx36+/+ mice (A and C), no coupling in islets of Cx36–/– mice (B), and greater coupling in islets of RIP-Cx43+/+ and RIP-Cx32+/+ mice (D and E). (F–J) Microinjection with EB showed sizable coupling in islets of Cx36+/+, RIP-Cx43+/+, and RIP-Cx32+/+ mice (F, I, and J), no coupling in islets of Cx36–/– mice (G), and greater coupling in islets of RIP-Cx36+/+ animals (H). Scale bar: 100 μm. (K and L) Coupling extent in islets from Cx36+/+, Cx36+/–, RIP-Cx43–/–, and RIP-Cx32–/– mice, as well as all mice from the RIP-Cx36 line, was larger after EB (L) than LY (K) injection. No coupling was observed with either tracer in Cx36–/– mice. Values show medians of the indicated number of islet microinjections. *P < 0.05, **P < 0.01, ***P < 0.001, median test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts