Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A regulatory feedback loop involving p63 and IRF6 links the pathogenesis of 2 genetically different human ectodermal dysplasias
Francesca Moretti, … , Luisa Guerrini, Antonio Costanzo
Francesca Moretti, … , Luisa Guerrini, Antonio Costanzo
Published April 26, 2010
Citation Information: J Clin Invest. 2010;120(5):1570-1577. https://doi.org/10.1172/JCI40267.
View: Text | PDF
Research Article

A regulatory feedback loop involving p63 and IRF6 links the pathogenesis of 2 genetically different human ectodermal dysplasias

  • Text
  • PDF
Abstract

The human congenital syndromes ectrodactyly ectodermal dysplasia-cleft lip/palate syndrome, ankyloblepharon ectodermal dysplasia clefting, and split-hand/foot malformation are all characterized by ectodermal dysplasia, limb malformations, and cleft lip/palate. These phenotypic features are a result of an imbalance between the proliferation and differentiation of precursor cells during development of ectoderm-derived structures. Mutations in the p63 and interferon regulatory factor 6 (IRF6) genes have been found in human patients with these syndromes, consistent with phenotypes. Here, we used human and mouse primary keratinocytes and mouse models to investigate the role of p63 and IRF6 in proliferation and differentiation. We report that the ΔNp63 isoform of p63 activated transcription of IRF6, and this, in turn, induced proteasome-mediated ΔNp63 degradation. This feedback regulatory loop allowed keratinocytes to exit the cell cycle, thereby limiting their ability to proliferate. Importantly, mutations in either p63 or IRF6 resulted in disruption of this regulatory loop: p63 mutations causing ectodermal dysplasias were unable to activate IRF6 transcription, and mice with mutated or null p63 showed reduced Irf6 expression in their palate and ectoderm. These results identify what we believe to be a novel mechanism that regulates the proliferation-differentiation balance of keratinocytes essential for palate fusion and skin differentiation and links the pathogenesis of 2 genetically different groups of ectodermal dysplasia syndromes into a common molecular pathway.

Authors

Francesca Moretti, Barbara Marinari, Nadia Lo Iacono, Elisabetta Botti, Alessandro Giunta, Giulia Spallone, Giulia Garaffo, Emma Vernersson-Lindahl, Giorgio Merlo, Alea A. Mills, Costanza Ballarò, Stefano Alemà, Sergio Chimenti, Luisa Guerrini, Antonio Costanzo

×

Figure 5

IRF6 negatively modulates the proliferative potential of epithelial cells.

Options: View larger image (or click on image) Download as PowerPoint

IRF6 negatively modulates the proliferative potential of epithelial cel...
(A) Colony formation of TE13 epithelial carcinoma cells transfected with the indicated expression vectors (ΔNp63α, ΔNp63α/R279H, or HA-IRF6). Colonies of more than 1 mm in diameter were counted, and results are expressed as mean ± SEM (3 independent experiments, duplicate samples). IRF6 expression induced growth arrest that is partially reverted by ΔNp63α-R279H coexpression. (B) Colony formation of human primary keratinocytes transduced with a vector expressing HA-tag–IRF6. Immunoblotting shows HA-IRF6 expression. Actin was used as loading control. The number of colonies that were more than 1 mm in diameter was calculated with ImageJ software. IRF6 expression reduced the proliferative potential of keratinocytes. Results are expressed as percentage of each kind of colony over the total (error bars = 1 SD). P = 0.01, control versus IRF6 (3 independent experiments, duplicate samples). The relative percentage of holoclones, paraclones, and meroclones is shown in Table 2. (C) Schematic representation of the link between ΔNp63 and IRF6. IRF6 is transcriptionally activated by ΔNp63 during differentiation. IRF6 protein expression induces ΔNp63 degradation, reducing proliferative potential of epithelial cells.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts