Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A retinoic acid–dependent network in the foregut controls formation of the mouse lung primordium
Felicia Chen, … , Karen Niederreither, Wellington V. Cardoso
Felicia Chen, … , Karen Niederreither, Wellington V. Cardoso
Published May 17, 2010
Citation Information: J Clin Invest. 2010;120(6):2040-2048. https://doi.org/10.1172/JCI40253.
View: Text | PDF
Research Article Development

A retinoic acid–dependent network in the foregut controls formation of the mouse lung primordium

  • Text
  • PDF
Abstract

The developmental abnormalities associated with disruption of signaling by retinoic acid (RA), the biologically active form of vitamin A, have been known for decades from studies in animal models and humans. These include defects in the respiratory system, such as lung hypoplasia and agenesis. However, the molecular events controlled by RA that lead to formation of the lung primordium from the primitive foregut remain unclear. Here, we present evidence that endogenous RA acts as a major regulatory signal integrating Wnt and Tgfβ pathways in the control of Fgf10 expression during induction of the mouse primordial lung. We demonstrated that activation of Wnt signaling required for lung formation was dependent on local repression of its antagonist, Dickkopf homolog 1 (Dkk1), by endogenous RA. Moreover, we showed that simultaneously activating Wnt and repressing Tgfβ allowed induction of both lung buds in RA-deficient foreguts. The data in this study suggest that disruption of Wnt/Tgfβ/Fgf10 interactions represents the molecular basis for the classically reported failure to form lung buds in vitamin A deficiency.

Authors

Felicia Chen, Yuxia Cao, Jun Qian, Fengzhi Shao, Karen Niederreither, Wellington V. Cardoso

×

Figure 6

Tgfβ inhibition and Wnt activation fully rescue lung buds in RA-deficient conditions.

Options: View larger image (or click on image) Download as PowerPoint
Tgfβ inhibition and Wnt activation fully rescue lung buds in RA-deficien...
(A–H) Addition of Tgfβ blocking antibody (TAb) and Wnt3a bead to BMS-treated foreguts elicited bilateral lung bud formation (A and B, arrowheads), which was associated with local rescue of Fgf10 (C and D, arrowheads and circled regions). Similar rescue of local budding (E–G) and Fgf10 expression (H) was observed in Raldh2–/– foreguts treated with the Tgfβ receptor 1 antagonist SB4 and Gsk3b inhibitor. Corresponding H&E staining is shown in B and G. Original magnification, ×20 (A, right, B, and F); ×10 (D and H). Scale bar: 250 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts