Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice
Hans D. Brightbill, … , Mercedesz Balazs, Lawren C. Wu
Hans D. Brightbill, … , Mercedesz Balazs, Lawren C. Wu
Published May 10, 2010
Citation Information: J Clin Invest. 2010;120(6):2218-2229. https://doi.org/10.1172/JCI40141.
View: Text | PDF
Research Article Immunology

Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice

  • Text
  • PDF
Abstract

IgE-mediated hypersensitivity is central to the pathogenesis of asthma and other allergic diseases. Although neutralization of serum IgE with IgE-specific antibodies is in general an efficacious treatment for allergic asthma, one limitation of this approach is its lack of effect on IgE production. Here, we have developed a strategy to disrupt IgE production by generating monoclonal antibodies that target a segment of membrane IgE on human IgE-switched B cells that is not present in serum IgE. This segment is known as the M1′ domain, and using genetically modified mice that contain the human M1′ domain inserted into the mouse IgE locus, we demonstrated that M1′-specific antibodies reduced serum IgE and IgE-producing plasma cells in vivo, without affecting other immunoglobulin isotypes. M1′-specific antibodies were effective when delivered prophylactically and therapeutically in mouse models of immunization, allergic asthma, and Nippostrongylus brasiliensis infection, likely by inducing apoptosis of IgE-producing B cells. In addition, we generated a humanized M1′-specific antibody that was active on primary human cells in vivo, as determined by its reduction of serum IgE levels and IgE plasma cell numbers in a human PBMC-SCID mouse model. Thus, targeting of human IgE-producing B cells with apoptosis-inducing M1′-specific antibodies may be a novel treatment for asthma and allergy.

Authors

Hans D. Brightbill, Surinder Jeet, Zhonghua Lin, Donghong Yan, Meijuan Zhou, Martha Tan, Allen Nguyen, Sherry Yeh, Donnie Delarosa, Steven R. Leong, Terence Wong, Yvonne Chen, Mark Ultsch, Elizabeth Luis, Sree Ranjani Ramani, Janet Jackman, Lino Gonzalez, Mark S. Dennis, Anan Chuntharapai, Laura DeForge, Y. Gloria Meng, Min Xu, Charles Eigenbrot, Wyne P. Lee, Canio J. Refino, Mercedesz Balazs, Lawren C. Wu

×

Figure 9

Crystal structure of humanized M1′-specific 47H4 antibody Fab in complex with M1′-derived peptide.

Options: View larger image (or click on image) Download as PowerPoint
Crystal structure of humanized M1′-specific 47H4 antibody Fab in complex...
(A) The crystal structure of the humanized M1′-specific 47H4 antibody Fab (space filling mode; heavy chain is shown as blue, light chain is shown as gray) in complex with an M1′-derived peptide (stick model, Ac-S6AQSQRAPDRVLCHSGQQQGLPRAAGGSVPHPRCH40-OOH) shows hydrogen bonds (dotted lines) between the h47H4 Fab and the M1′ peptide and burial of an arginine side chain from the M1′ peptide (Arg 11) in a central deep pocket in the h47H4 Fab. Numbers correspond to amino acid residues in the entire M1′ sequence. (B) The arginine binding pocket is formed by CDRs L1 (magenta), L3 (red), and H3 (purple), but CDR H2 (yellow) makes more contacts with the peptide than any other CDR. Amino acid side chains in the Fab that make important contacts with the peptide are shown as stick representations. (C) Four antibody aspartic acid residues in the Fab peptide-binding region combine to create a net negative electrostatic potential (red), which is complementary to the positive charges from M1′ peptide arginine side chains. H, heavy chain; L, light chain.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts