Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Uric acid promotes an acute inflammatory response to sterile cell death in mice
Hajime Kono, … , Fernando Ontiveros, Kenneth L. Rock
Hajime Kono, … , Fernando Ontiveros, Kenneth L. Rock
Published May 24, 2010
Citation Information: J Clin Invest. 2010;120(6):1939-1949. https://doi.org/10.1172/JCI40124.
View: Text | PDF
Research Article

Uric acid promotes an acute inflammatory response to sterile cell death in mice

  • Text
  • PDF
Abstract

Necrosis stimulates inflammation, and this response is medically relevant because it contributes to the pathogenesis of a number of diseases. It is thought that necrosis stimulates inflammation because dying cells release proinflammatory molecules that are recognized by the immune system. However, relatively little is known about the molecular identity of these molecules and their contribution to responses in vivo. Here, we investigated the role of uric acid in the inflammatory response to necrotic cells in mice. We found that dead cells not only released intracellular stores of uric acid but also produced it in large amounts postmortem as nucleic acids were degraded. Using newly developed Tg mice that have reduced levels of uric acid either intracellularly and/or extracellularly, we found that uric acid depletion substantially reduces the cell death–induced inflammatory response. Similar results were obtained with pharmacological treatments that reduced uric acid levels either by blocking its synthesis or hydrolyzing it in the extracellular fluids. Importantly, uric acid depletion selectively inhibited the inflammatory response to dying cells but not to microbial molecules or sterile irritant particles. Collectively, our data identify uric acid as a proinflammatory molecule released from dying cells that contributes significantly to the cell death–induced inflammatory responses in vivo.

Authors

Hajime Kono, Chun-Jen Chen, Fernando Ontiveros, Kenneth L. Rock

×

Figure 4

Reduced neutrophil recruitment to liver injury in mice treated with rasburicase.

Options: View larger image (or click on image) Download as PowerPoint
Reduced neutrophil recruitment to liver injury in mice treated with rasb...
Liver tissue MPO activity (A) and serum ALT activity (B) of control and rasburicase-treated mice 18 hours after challenge with 300 mg/kg acetaminophen. n = 6 (PBS); n = 20 (APAP); n = 18 (APAP + rasburicase). Means and SEM values are for combined data from 4 independent experiments. **P < 0.01, versus control APAP alone group. NS, not significant versus APAP alone.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts