Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages
Karine Labadie, … , Roger Le Grand, Pierre Roques
Karine Labadie, … , Roger Le Grand, Pierre Roques
Published February 22, 2010
Citation Information: J Clin Invest. 2010;120(3):894-906. https://doi.org/10.1172/JCI40104.
View: Text | PDF
Research Article

Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages

  • Text
  • PDF
Abstract

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that induces in humans a disease characterized by fever, rash, and pain in muscles and joints. The recent emergence or reemergence of CHIKV in the Indian Ocean Islands and India has stressed the need to better understand the pathogenesis of this disease. Previous CHIKV disease models have used young or immunodeficient mice, but these do not recapitulate human disease patterns and are unsuitable for testing immune-based therapies. Herein, we describe what we believe to be a new model for CHIKV infection in adult, immunocompetent cynomolgus macaques. CHIKV infection in these animals recapitulated the viral, clinical, and pathological features observed in human disease. In the macaques, long-term CHIKV infection was observed in joints, muscles, lymphoid organs, and liver, which could explain the long-lasting CHIKV disease symptoms observed in humans. In addition, the study identified macrophages as the main cellular reservoirs during the late stages of CHIKV infection in vivo. This model of CHIKV physiopathology should allow the development of new therapeutic and/or prophylactic strategies.

Authors

Karine Labadie, Thibaut Larcher, Christophe Joubert, Abdelkrim Mannioui, Benoit Delache, Patricia Brochard, Lydie Guigand, Laurence Dubreil, Pierre Lebon, Bernard Verrier, Xavier de Lamballerie, Andreas Suhrbier, Yan Cherel, Roger Le Grand, Pierre Roques

×

Figure 2

Lesions observed in tissues collected from 12 macaques inoculated with intermediate doses of CHIKV.

Options: View larger image (or click on image) Download as PowerPoint
Lesions observed in tissues collected from 12 macaques inoculated with i...
Histology of tissues from CHIKV-infected macaques. (A) Spleen, 6 dpi. Density of mononuclear cells was diffusely increased in the red pulp. These mononuclear cells corresponded mostly to macrophages with abundant cytoplasm and large nucleolated nucleus (inset). Some mononuclear cells were undergoing mitosis (arrows). (B) Spleen, 32 dpi. Macrophages were still numerous in the red pulp; a few mitotic cells were visible (arrow). (C) Normal spleen. Red pulp contained numerous red blood cells. (D) Lymph node, 6 dpi. The cortex was distended by numerous macrophages (some denoted by arrowheads). (E) Lymph node, 44 dpi. Severe follicular enlargement (asterisks) was associated with macrophage infiltration. Postcapillary venules of the T-dependent area (arrows) and medulla (M) are indicated. (F and G) Normal lymph node. Lymphoid follicles (asterisks) and medulla are indicated. (H) Liver, 6 dpi. The number of apoptotic hepatocytes with nuclei (arrows), detected by TUNEL assay, increased. (I) Liver, 90 dpi. Multifocal interstitial mononuclear cell infiltration (arrowheads) was observed in the liver parenchyma. (J) Normal liver. (K and L) Skeletal muscle, 55 dpi. Mild multifocal necrosis of muscle fibers (asterisk) was associated with infiltration by mononuclear cells, including macrophages (arrowheads). (M) Normal muscle. (A–G and I–M) Hematoxylin eosin safran stain. (H) In situ detection of cell death using TUNEL staining. Scale bars: 100 μm (A–D, F, and H–M); 10 μm (insets); 1 mm (E and G).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts