Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation
Bermans J. Iskandar, … , Thomas D. Cook, Kirk J. Hogan
Bermans J. Iskandar, … , Thomas D. Cook, Kirk J. Hogan
Published April 26, 2010
Citation Information: J Clin Invest. 2010;120(5):1603-1616. https://doi.org/10.1172/JCI40000.
View: Text | PDF
Research Article

Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation

  • Text
  • PDF
Abstract

The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.

Authors

Bermans J. Iskandar, Elias Rizk, Brenton Meier, Nithya Hariharan, Teodoro Bottiglieri, Richard H. Finnell, David F. Jarrard, Ruma V. Banerjee, J.H. Pate Skene, Aaron Nelson, Nirav Patel, Carmen Gherasim, Kathleen Simon, Thomas D. Cook, Kirk J. Hogan

×

Figure 1

Summary of experimental interventions within the folate and methylation pathways.

Options: View larger image (or click on image) Download as PowerPoint
Summary of experimental interventions within the folate and methylation ...
Folic acid enters the cell through Folr1, which is upregulated with injury. It is then converted to the active tetrahydrofolate (THF) form by Dhfr. This allows eventual production of nucleotides and certain amino acids as well as transfer of the methyl group into the methionine methylation cycle. The latter occurs through the B12-dependent MS step. Subsequently, SAM is the substrate used by the methyltransferase enzymes for the methylation reactions. Inhibition of Folr1, Dhfr, MS, and Dnmt suppresses CNS regeneration. In turn, activation of Dnmt enhances CNS regeneration.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts