Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Identification of a B cell signature associated with renal transplant tolerance in humans
Kenneth A. Newell, … , Laurence A. Turka, Vicki L. Seyfert-Margolis
Kenneth A. Newell, … , Laurence A. Turka, Vicki L. Seyfert-Margolis
Published May 24, 2010
Citation Information: J Clin Invest. 2010;120(6):1836-1847. https://doi.org/10.1172/JCI39933.
View: Text | PDF
Research Article

Identification of a B cell signature associated with renal transplant tolerance in humans

  • Text
  • PDF
Abstract

Establishing long-term allograft acceptance without the requirement for continuous immunosuppression, a condition known as allograft tolerance, is a highly desirable therapeutic goal in solid organ transplantation. Determining which recipients would benefit from withdrawal or minimization of immunosuppression would be greatly facilitated by biomarkers predictive of tolerance. In this study, we identified the largest reported cohort to our knowledge of tolerant renal transplant recipients, as defined by stable graft function and receiving no immunosuppression for more than 1 year, and compared their gene expression profiles and peripheral blood lymphocyte subsets with those of subjects with stable graft function who are receiving immunosuppressive drugs as well as healthy controls. In addition to being associated with clinical and phenotypic parameters, renal allograft tolerance was strongly associated with a B cell signature using several assays. Tolerant subjects showed increased expression of multiple B cell differentiation genes, and a set of just 3 of these genes distinguished tolerant from nontolerant recipients in a unique test set of samples. This B cell signature was associated with upregulation of CD20 mRNA in urine sediment cells and elevated numbers of peripheral blood naive and transitional B cells in tolerant participants compared with those receiving immunosuppression. These results point to a critical role for B cells in regulating alloimmunity and provide a candidate set of genes for wider-scale screening of renal transplant recipients.

Authors

Kenneth A. Newell, Adam Asare, Allan D. Kirk, Trang D. Gisler, Kasia Bourcier, Manikkam Suthanthiran, William J. Burlingham, William H. Marks, Ignacio Sanz, Robert I. Lechler, Maria P. Hernandez-Fuentes, Laurence A. Turka, Vicki L. Seyfert-Margolis

×

Figure 1

TOL participants exhibit unique expression patterns compared with SI participants.

Options: View larger image (or click on image) Download as PowerPoint
TOL participants exhibit unique expression patterns compared with SI par...
Hierarchical clustering of the 30 genes differentially expressed between TOL versus SI (fold change >2.0 overexpressed in the TOL group). TUBB2A not shown. B cell–specific genes are indicated by asterisks.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts